APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

Quarterly Technical Progress Report
April 1, 1998-June 30, 1998

By
Archie R. Taylor
T. Scott Hickman
James L. Justice

Report Issue Date: August 10, 1998

Performed Under Contract No. DE-FC22-93BC14990

OXY USA, Inc.
Midland, Texas
Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf San Andres Reservoir

By
Archie R. Taylor
T. Scott Hickman
James L. Justice

October 1999

Work Performed Under Contract No. DE-FC22-93BC14990

Prepared for
U.S. Department of Energy
Assistant Secretary for Fossil Energy

Gary Walker, Project Manager
National Petroleum Technology Office
P.O. Box 3628
Tulsa, OK 74101

Prepared by
OXY USA Inc.
P.O. Box 50250
Midland, TX 79710-0250

T. Scott Hickman and Associates
550 West Texas St., Ste. 950
Midland, TX 79701

Advanced Reservoir Technologies
P.O. Box 985
Addison, TX 75001-0985
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus or product, or represents that its use would not infringe privately owned rights. Reference to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government of any agency thereof.

OBJECTIVES

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include:

1. Advanced petrophysics
2. Three-dimensional (3-D) seismic
3. Cross-well bore tomography
4. Advanced reservoir simulation
5. Carbon dioxide (CO₂) stimulation treatments
6. Hydraulic fracturing design and monitoring
7. Mobility control agents

SUMMARY OF TECHNICAL PROGRESS

West Welch Unit is one of four large waterflood units in the Welch Field in the northwestern portion of Dawson County, Texas. The Welch Field was discovered in the early 1940's and produces oil under a solution gas drive mechanism from the San Andres formation at approximately 4800 ft. The field has been under waterflood for 30 years and a significant portion has been infill-drilled on 20-ac density. A 1982-86 pilot CO₂ injection project in the offsetting South Welch Unit yielded positive results. Recent installation of a CO₂ pipeline near the field allowed the phased development of a miscible CO₂ injection project at the South Welch Unit.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
The reservoir quality at the West Welch Unit is poorer than other San Andres reservoirs due to its relative position to sea level during deposition. Because of the proximity of a CO₂ source and the CO₂ operating experience that would be available from the South Welch Unit, West Welch Unit is an ideal location for demonstrating methods for enhancing economics of IOR projects in lower quality SSC reservoirs. This Class 2 project concentrates on the efficient design of a miscible CO₂ project based on detailed reservoir characterization from advanced petrophysics, 3-D seismic interpretations and cross wellbore tomography interpretations.

During this quarter, interpretation and integration of the crosswell seismic data continued, development of the south expansion area was completed and CO₂ injection was expanded into last row of injectors.

3-D SEISMIC INTEGRATION

Two new wells were completed in the project area based on the seismic guided mapping. Initial production from these two wells totaled 60 barrels of oil and 400 barrels of water per day. This completes the drilling of the additional wells identified by the seismic guided mapping. The total oil production from these wells is approximately 200 barrels of oil per day with estimated reserves of 300,000 barrels of oil.

CROSS WELL SEISMIC

Investigation of the shear velocity (Vₚ) versus compressional velocity (Vₛ) relationship for identifying rock type has continued. To facilitate the study, Advanced Reservoir Technologies is being provided access to Oxy's seismic interpretation system and the Stacked Curve system which allows the combining of wellbore data (log or core) for various analytical procedures. Much of the cross well seismic data can be reduced to a log trace format that can be integrated with other data in the Stacked Curve system and displayed as cross sections.

The cluster groups being identified from Vₚ versus Vₛ plots apparently represent lithologically-related units. Further work is being done to determine the spatial distribution of these units and to better understand their physical properties.

NUMERICAL SIMULATION

Actual injection rates continue to fall below predictions from the seismic enhanced model. However, the model had 17 wells on CO₂ injection while currently injection is only going into 11-12 wells due to various problems. There still has not been the significant increase in CO₂ production, which the base geologic model indicated would occur. Assuming the additional wells not on injection would perform similarly to the current injection wells, actual field performance to date would be following the seismic enhanced model. It will take 1-2 years of actual performance to establish the accuracy of the seismic enhanced model.
AREA PREPARATION AND CONSTRUCTION

CO₂ is currently going into 11 of the 17 projected wells in the project area. The CO₂ injection system was extended south to the last row of injectors. Injection into the #4817 and #4802 began April 30th. The #4809w was taken off CO₂ injection on April 30th due to a casing leak. The well was cement squeezed and is currently being monitored to be certain the squeeze was successful before continuing CO₂ injection. The #4837w was shut-in to allow pressure to dissipate from the wellbore prior to a workover to improve injectivity. By shutting the well in and allowing the pressure to dissipate we should avoid having to “mud up” for well control, thereby reducing the formation damage from workover fluids. Well #4812w stopped taking CO₂ in measurable volumes at the end of April.

Average CO₂ injection rates in the project area for the quarter were:

<table>
<thead>
<tr>
<th>Month</th>
<th>Rate (mscfd)</th>
<th>Wells</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>5444</td>
<td>12</td>
</tr>
<tr>
<td>May</td>
<td>4966</td>
<td>11</td>
</tr>
<tr>
<td>June</td>
<td>5172</td>
<td>11</td>
</tr>
</tbody>
</table>

Field construction of CO₂ handling facilities continues in anticipation of CO₂ breakthrough later this year. The production separator and test separators were set and are being piped up now. The 4 inch high pressure CO₂ return line from the Welch gas plant is being installed, with the 10 inch high pressure gathering line scheduled to be installed during the 3rd quarter.

TECHNOLOGY TRANSFER


REFERENCES