INCORPORATING LONG-TERM CLIMATE CHANGE IN PERFORMANCE ASSESSMENT FOR THE WASTE ISOLATION PILOT PLANT

Peter N. Swift
WIPP Performance Assessment Department 6342, MS-1328
Sandia National Laboratories, Albuquerque, NM 87185

Bruce L. Baker
Technadyne Engineering Consultants, Inc., Albuquerque, NM

Kathy Economy
Ecodynamics Research Associates, Albuquerque, NM

James W. Garner
Applied Physics, Inc., Albuquerque, NM

Jon C. Helton
Arizona State University, Tempe, AZ

David K. Rudeen
New Mexico Engineering Research Institute, Albuquerque, NM

ABSTRACT

The United States Department of Energy (DOE) is developing the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico for the disposal of transuranic wastes generated by defense programs. Applicable regulations (40 CFR 191) require the DOE to evaluate disposal-system performance for 10,000 yr. Climatic changes may affect performance by altering groundwater flow.

Paleoclimatic data from southeastern New Mexico and the surrounding area indicate that the wettest and coolest Quaternary climate at the site can be represented by that at the last glacial maximum, when mean annual precipitation was approximately twice that of the present. The hottest and driest climates have been similar to that of the present. The regularity of global glacial cycles during the late Pleistocene confirms that the climate of the last glacial maximum is suitable for use as a cooler and wetter bound for variability during the next 10,000 yr. Climate variability is incorporated into groundwater-flow modeling for WIPP PA by causing hydraulic head in a portion of the model-domain boundary to rise to the ground surface with hypothetical increases in precipitation during the next 10,000 yr. Variability in modeled disposal-system performance introduced by allowing head values to vary over this range is insignificant compared to variability resulting from other causes, including incomplete understanding of transport processes. Preliminary performance assessments suggest that climate variability will not affect regulatory compliance.
ACKNOWLEDGMENTS

This work was performed at Sandia National Laboratories, Albuquerque, NM, and was supported by the United States Department of Energy under Contract DE-AC04-76DP00789. The authors are members of the WIPP Performance Assessment Department (6342) at Sandia National Laboratories, and gratefully acknowledge contributions of approximately 40 colleagues in the department who have also worked on WIPP performance assessment under the direction of D. R. Anderson. T.F. Corbet and C.L. Axness provided critical reviews of the manuscript. Illustrations and editorial support were provided by D. Marchand, H. Olmstead, and F. Puffer of Tech Reps, Inc. This report will also be published in the Proceedings of the Thirty-Second Hanford Symposium on Health and the Environment; Regional Impacts of Global Climate Change: Assessing Change and Response at the Scales that Matter, Richland, WA, October 19-21, 1993.
INTRODUCTION

The Waste Isolation Pilot Plant (WIPP) is planned as a research and development facility to demonstrate the safe disposal of transuranic wastes generated by the United States Department of Energy (DOE). It is located in semiarid rangeland in southeastern New Mexico 42 km east-southeast of the city of Carlsbad (Figure 1), at a surface elevation of 1040 m above mean sea level. Bedded halite of the Late Permian Salado Formation (approximately 255 million yr old) has been selected as the host strata because of its extremely low permeability, long-term geologic stability, and creep properties that facilitate sealing. Excavation of the waste-emplacement panels 655 m below the ground surface is partially complete, and additional panels will be excavated in the future as needed.

No transuranic waste is presently at the WIPP, and before disposing of waste in the facility the DOE must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). The regulation of interest here is Subpart B of 40 CFR 191 (Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, Final Rule [US EPA, 1985]), which requires evaluation of the consequences of future inadvertent intrusion into the repository. As discussed below, climate change will affect performance only if the repository is breached. Compliance with long-term regulations for which human intrusion does not apply, including those implementing the Resource Conservation and Recovery Act (RCRA), will not be affected.

Sandia National Laboratories is performing iterative preliminary performance assessments (PAs) to provide guidance to the WIPP Project while preparing for final evaluations of compliance with applicable long-term regulations. Preliminary PAs for the WIPP have been performed in 1990 (Bertram-Howery et al., 1990; Rechard et al., 1990; Helton et al., 1991), 1991 (WIPP PA Division, 1991 a,b,c; Helton et al., 1992), and 1992 (WIPP PA Department, 1992 a,b; Sandia WIPP Project, 1992; WIPP PA Department 1993 a,b). As stipulated by Congress (Public Law 102-579, 1992), biennial preliminary PAs will continue to be performed for the WIPP until the DOE is prepared to submit a final PA to the EPA (currently scheduled for 1998).

The Containment Requirements of 40 CFR 191 set probabilistic limits on the 10,000-yr cumulative releases of radionuclides at the "accessible environment" boundary, which is the ground surface and, for the WIPP, a vertical plane in the subsurface 2.4 km at its closest point from the waste (WIPP PA Department, 1992a, 1993a). The regulation requires estimating the probability of all releases, and allows larger releases at lower probabilities. "Inadvertent human intrusion" (e.g., by drilling during future exploration for natural resources) must be considered as a possible event.

Preliminary PAs to date indicate that, without human intrusion, the repository will comply with 40 CFR 191 B without difficulty (WIPP PA Department, 1992a, 1993a). Significant quantities of radionuclides from the WIPP will be transported only as solutes in a liquid phase (brine), and all modeling to date indicates that brine will not migrate more than a few tens of meters from the waste in 10,000 yr if the waste-disposal panels are not breached by intrusion (WIPP PA Department, 1993a,b). However, if human intrusion occurs, radionuclides may reach the accessible environment by two paths. First, some material will be brought to the ground surface immediately during drilling. This release may be important for regulatory compliance (WIPP PA Department, 1992a), but will not be affected by climate change and is not discussed further here. Second, additional radionuclides may reach the subsurface boundary of the accessible environment long after the intruding borehole is abandoned, by transport as
Figure 1. Location of the Waste Isolation Pilot Plant.
solute migration in brine that migrates up the borehole and laterally away from the repository in an overlying permeable unit (the Culebra Dolomite Member of the Late Permian Rustler Formation). Long-term changes in climate have the potential to affect disposal-system performance by altering flow and transport in this subsurface pathway.

Long-Term Climate Variability

Present Climate

Mean annual precipitation at the WIPP has been estimated to be between 28 and 34 cm/yr (Hunter, 1985). Freshwater pan evaporation in the region is estimated to be 280 cm/yr (US DOE, 1980). At Carlsbad (100m lower than the WIPP surface elevation), 53 yr (1931-1983) annual means for precipitation and temperature are 32 cm/yr and 17.1°C (University of New Mexico, 1989). Annual precipitation is dominated by a late summer monsoon, when solar warming of the continent creates an atmospheric pressure gradient that draws moist air inland from the Gulf of Mexico (Cole, 1975). Winters are generally cool and dry.

Paleoclimates and Climatic Variability

Geologic data from southeastern New Mexico and the surrounding region show repeated alternations of wetter and drier climates throughout the Pleistocene, corresponding to global cycles of glaciation and deglaciation. Data from plant and animal remains and paleo-lake levels permit quantitative climate reconstructions for the region only for the last glacial cycle, and confirm the interpretation that conditions were coolest and wettest during glacial maxima (Swift, 1993). The hottest and driest conditions since the last glaciation have been similar to those of the present. Modeling of global circulation patterns suggests that these changes resulted from the disruption and southward displacement of the winter jet stream by the ice sheet, causing an increase in the frequency and intensity of winter storms throughout the American Southwest (COHMAP Members, 1988). Mean annual precipitation 22,000 to 18,000 yr ago, when the last North American ice sheet reached its southern limit roughly 1500 km north of the WIPP, was approximately twice that of the present (Figure 2). Mean annual temperatures may have been as much as 5°C colder than at present.

Glacial periodicities have been stable for the last 800,000 yr (Milankovitch, 1941; Hays et al., 1976; Imbrie et al., 1984; Imbrie, 1985). Barring anthropogenic changes in the Earth’s climate, relatively simple modeling of climatic response to orbital changes in insolation suggests that the next glacial maximum will occur in approximately 60,000 yr (Imbrie and Imbrie, 1980). The extent to which unprecedented anthropogenic climate changes may alter this conclusion is uncertain, but presently available models of climatic response to an enhanced greenhouse effect (e.g., Mitchell, 1989; Houghton et al., 1990) do not predict changes of a larger magnitude than those of the Pleistocene. Furthermore, published models do not suggest significant increases in precipitation in southeastern New Mexico following global warming (Washington and Meehl, 1984; Wilson and Mitchell, 1987; Schlesinger and Mitchell, 1987; Houghton et al., 1990). Even allowing for anthropogenic change, climate variability at the WIPP can be bounded by Pleistocene extremes (Swift, 1993).

Relatively shorter-term climatic fluctuations have occurred throughout the Pleistocene and Holocene with periodicities on the scale of hundreds to thousands of years (Figure 2). The causes of these nonglacial fluctuations are, in general, unknown, but paleoclimatic data indicate that precipitation may have approached glacial highs at
Figure 2. Estimated mean annual precipitation at the WIPP during the late Pleistocene and Holocene (Swift, 1993).
some times during the Holocene (Swift, 1993). Based on the past record, fluctuations of this sort are probable during the next 10,000 yr, and must be included in long-term assessments. The climate-variability model selected for WIPP PA conceptually incorporates uncertainty in both glacial and nonglacial climatic fluctuations by allowing conditions to reach, at a maximum, glacial extremes three times during the next 10,000 yr.

Hydrologic Modeling

WIPP PA models groundwater flow and radionuclide transport in the Culebra Dolomite Member of the Rustler Formation because it is the most transmissive water-saturated unit above the repository (WIPP PA Department 1992b, 1993a). Present groundwater flow is substantially less in other units, and only the Culebra is considered to represent a possible pathway for radionuclide release.

The Culebra is a fractured dolomite approximately 7 m thick, and is present throughout the region of interest at depths typically of 200 m or greater. In most locations, it is bounded above and below by low-permeability mudstones and evaporites (Beauheim and Holt, 1990; Brinster, 1991). WIPP PA modeling treats the Culebra as a perfectly confined aquifer, with flow occurring only in two dimensions in the model domain (Figure 3) (WIPP PA Department 1992b, 1993a).

No direct evidence exists for the location of either recharge to or discharge from the Culebra. Potentiometric-surface maps constructed from available well data imply inflow to the model domain from the north and outflow to the south. Mercer (1983) suggested that recharge probably occurs 15 to 30 km northwest of the WIPP where the Rustler Formation crops out. Lambert (1991) and Lambert and Carter (1987) have speculated on the basis of isotopic evidence that little if any recharge may be occurring now and that present flow reflects long-term draining from recharge during Pleistocene glacial periods. Preliminary modeling indicates that long-term draining is not incompatible with observed hydraulic properties (Davies, 1989; Corbet and Wallace, 1993). Three-dimensional regional flow modeling in progress will permit additional testing of this hypothesis and provide an improved model for the spatial and temporal variability in vertical flux (Corbet and Wallace, 1993).

For the purposes of PA modeling, the location of recharge is unspecified, but is assumed to occur north of the model domain. The amount of present recharge is not specified, except through the assumption that present hydraulic head values within the model domain reflect steady-state conditions. Changes in recharge are not modeled explicitly because the assumed recharge area is outside the model domain, and are instead approximated by varying head values in a "recharge strip" through which most inflow occurs along the northern edges of the model domain (Figure 3). Heads are not varied along other boundaries, reflecting the belief that all recharge occurs north of the model domain. For the 1991 and 1992 preliminary PAs, climatic variability in recharge to the Culebra has been approximated using the following relationship (Swift, 1991; WIPP PA Division, 1991b,c; Helton et al., 1992):

\[
\frac{h_r(t)}{h_p} = 3A + 1 - A^{-1} \left(\cos \phi + \frac{1}{2} \cos \phi t - \sin \phi t \right) . \quad (\text{Eq.1})
\]

This function defines time-dependent head values in the "recharge strip"
Figure 3. Topographic map of the WIPP area showing the boundaries of the regional groundwater flow model used in the 1991 performance assessment (modified from WIPP PA Division, 1991b).
where
\[h_t = \text{head (m) in selected boundary cells in the Culebra at time } t, \]
\[h_p = \text{estimated head (m) in selected boundary cells in the Culebra now,} \]
\[A = \text{recharge amplitude factor (dimensionless), as described below,} \]
\[\theta = \text{frequency (Hz) for Pleistocene glaciations,} \]
\[\phi = \text{frequency (Hz) for second-order climatic fluctuations, and} \]
\[t = \text{time (sec) after decommissioning of the WIPP.} \]

Figure 4 shows values of the function at 1000-yr time intervals, as implemented in the 1991 WIPP PA.

This function is not used to predict future climates, but rather is designed to provide a simple way to examine the influence of possible climatic changes during the next 10,000 yr. Variable parameters permit examining sensitivity to both the frequency and amplitude of climatic change.

Periodicity of the function is controlled by two terms, \(\theta \) and \(\phi \), that can be adjusted to approximate the periodicities observed in the paleoclimatic record. In preliminary PAs to date, fixed values have been used for these two parameters, yielding a glacial periodicity of 60,000 yr and a second-order periodicity of 3000 yr. If performance is believed to be sensitive to the frequency of climatic change, different values for these parameters can be used in future analyses.

Amplitude of the function is controlled by \(A \), which can be scaled appropriately for the groundwater-flow model parameter to be varied. For the 1991 PA, this parameter was varied from 1 to 1.16. The minimum value, 1, results in no change in boundary head values in the "recharge strip" during the entire 10,000 yr period. The maximum value, 1.16, causes head values to rise from their initial (present) elevation (e.g., 880 m in the northernmost cell) to the elevation of the ground surface (1030 m in the northernmost cell) at the end of the 10,000 period (Figure 4). Geologic evidence suggests that this increase in head may not be unrealistic: fossil spring deposits at lower elevations in the region indicate discharge from a water table at the ground surface during the late Pleistocene (Bachman, 1981; 1987). Relatively low topographic relief in the region precludes head rising significantly above the ground surface.

Discussion

In keeping with the probabilistic requirements of 40 CFR 191, consequence modeling for WIPP PA is performed using a Monte Carlo approach that relies on multiple realizations of system performance using deterministic models of physical processes (WIPP PA Department, 1992a,b). Values for uncertain parameters are selected using a Latin hypercube sampling strategy (McKay et al., 1979) from distributions based on available data, and each realization uses a separate input vector of sampled parameter values. The methodology is well-suited for conducting uncertainty and sensitivity analyses that provide quantitative and qualitative insights about the potential variability in model results caused by uncertainty in specific input data (Helton et al., 1991, 1992; Helton, 1993).

The recharge amplitude factor, \(A \), defined above for Equation 1, was one of 45 parameters sampled for use in 60 realizations in the 1991 preliminary PA (Helton et al., 1992) and one of 49 such parameters used in 70 realizations in the 1992 PA (WIPP PA Department, 1993a). Analyses were performed for scenarios involving a
Future Head / Present Head in Recharge Boundary

Figure 4. Boundary head function (Eq. 1) as implemented in the 1991 WIPP Performance Assessment (WIPA) Division, 1991(d). For this figure, \(\theta = 1.16, \phi = 1.7 \times 10^{-13} \text{ Hz}^2 \).
single intruding borehole and two intruding boreholes. In both 1991 and 1992, simulations were repeated using the full suite of realizations for each of several conceptual models for radionuclide transport in the Culebra. The choice of transport model for use in a final PA will be made after additional data are obtained (US DOE, 1993). Cases considered to date include transport in a single-porosity, fracture-only medium and transport in a dual-porosity medium which allowed diffusion into the pore volume of the dolomite matrix. Cases were considered both with and without chemical retardation of radionuclides by sorption. Computational modeling, including discussion of the computer codes used, and the results of these analyses are described in detail elsewhere (WIPP PA Division 1991b, Helton et al., 1992; WIPP PA Department 1992b, WIPP PA Department, 1993a).

Variability in the recharge amplitude factor contributed significantly to variability in total releases only for the conceptual model that included dual-porosity transport without chemical retardation (Helton et al., 1992). Even in this case, regression analysis shows variation in boundary head values to have been a minor contributor to overall variability in model outcomes, ranking below parameters used to describe radionuclide solubility in the source term, permeability of the borehole pathway from the repository to the Culebra, and fracture spacing in the Culebra.

Two analyses were conducted as part of the 1991 PA that specifically examined the importance of boundary head variations by using fixed minimum (1.00) and maximum (1.16) values for the recharge amplitude factor (Helton et al., 1992). The full suite of 60 realizations were repeated for each analysis with sampled values used for all other parameters, resulting in two sets of outcomes which were in all ways comparable except for the value used for A. Results are shown in Figure 5 for both single-porosity and dual-porosity transport with chemical retardation. For all but a few of the single-porosity realizations, using the maximum recharge factor has essentially no effect on total releases. This lack of sensitivity apparently occurs because single-porosity transport is rapid enough that most of the long-lived radionuclides (e.g., U) that enter the Culebra reach the accessible environment within 10,000 yr regardless of the head gradient. For the relatively slower dual-porosity transport, the maximum recharge factor increased releases for essentially all realizations in which subsurface releases occurred.

Conclusions

For preliminary comparison with requirements of 40 CFR 191, performance estimates are displayed as complementary cumulative distribution functions (CCDFs) that indicate the probability of exceeding various levels of cumulative radionuclide releases to the accessible environment. Because the modeling system and database are incomplete, no CCDFs presented to date in WIPP PA are suitable for compliance evaluations. Regulatory limits are commonly displayed, however, on preliminary CCDFs to provide guidance to the Project and to assist in identifying those areas in which uncertainty has the potential to affect compliance.

Figure 6 is a composite display of mean CCDFs that shows the relative importance of the recharge factor in the 1991 PA (Helton et al., 1992). Estimated performance is shown for three alternative cases: transport in a single-porosity medium with chemical retardation and sampled values for the recharge factor, transport in a dual-porosity medium with chemical retardation and the maximum recharge factor used in all realizations, and transport in a dual-porosity medium with chemical retardation and the minimum (i.e., present) recharge factor used in all realizations. Except for those parameters used to describe the alternative transport cases, all parameter values were the same for each case. Results do not include releases at the ground surface during drilling, and therefore are an incomplete measure of overall performance. Limits specified by 40 CFR 191 B are given only for reference.
Figure 5. Scatterplots showing 10,000-yr cumulative radionuclide releases to the subsurface boundary of the accessible environment 60 for realizations using minimum and maximum values for the recharge amplitude factor (Helton et al., 1992). Releases are normalized to the total inventory, as specified by 40 CFR 191. Releases are shown for single (top) and dual (bottom) porosity conceptual models for radionuclide transport including chemical retardation. Both plots show releases from scenarios involving two intrusions into the same panel 1000 yr after decommissioning (see WIPP PA Division [1991b] for a discussion of scenario definitions). Normalized releases below 10^{-8} (above) and 10^{-12} (below) are plotted at those values.
Figure 6. Mean CCDFs showing estimated performance of the WIPP for subsurface releases only following intrusions at 1000 yr after decommissioning (Helton et al., 1992). Releases are normalized to the total inventory, as specified by 40 CFR 191. Curves are shown for three cases: single-porosity transport with sampled values for the recharge factor, dual-porosity transport with the maximum value for the recharge factor, and dual-porosity transport with the minimum value for the recharge factor. All cases include chemical retardation. EPA limits are shown for reference only. Results here are not suitable for direct comparison to regulatory limits because they are preliminary (i.e., based on an incomplete modeling system and database) and because they do not include releases at the ground surface during drilling.
Single-porosity transport results in the largest releases and the CCDF closest to the EPA limits. Separate curves are not shown for the single-porosity extreme climate cases because, as shown in Figure 5, changing the recharge factor has essentially no effect on the largest releases that determine the location of the mean CCDF. Varying boundary head values within this range does not affect regulatory releases if transport occurs in a single-porosity medium.

The two mean CCDFs shown for dual-porosity transport are significantly further from the EPA limits than the CCDF for the single-porosity case. Allowing boundary head values to rise in response to climatic change does result in an increase in estimated releases, but not sufficiently to affect compliance.

Although all results shown here are conditional on the assumptions used in the analyses, and may change as flow and transport models are improved, the conclusion that climate change is unlikely to affect compliance appears robust. The uncertainty remaining about the correct conceptual models for both climatically-varying recharge and radionuclide transport in the Culebra is substantial, but as long as releases calculated with extreme head elevations and the least favorable transport model considered remain below the EPA limits, climate change alone will not lead to regulatory violations. Defensibility of this conclusion will depend in part on improved understanding of regional flow.
REFERENCES

PERFORMANCE ASSESSMENT DISTRIBUTION LIST
(Send Distribution list changes to M.M. Gruebel, Dept. 6342, Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185-1328)

Federal Agencies

US Department of Energy (6)
Office of Civilian Radioactive Waste Management
Attn: Deputy Director, RW-2
 Associate Director, RW-10/50
 Office of Program and Resources Management
 Office of Contract Business Management
 Director, RW-22, Analysis and Verification Division
 Associate Director, RW-30
 Office of Systems and Compliance
 Associate Director, RW-40
 Office of Storage and Transportation
 Director, RW-4/5
 Office of Strategic Planning and International Programs
 Office of External Relations

Forrestal Building
Washington, DC 20585

US Department of Energy
Albuquerque Operations Office
Attn: National Atomic Museum Library
PO Box 5400
Albuquerque, NM 87185

US Department of Energy (2)
Office of Environmental Restoration and Waste Management
Attn: Director, EM-1
 C. Frank, EM-30
Washington, DC 20585

US Department of Energy (3)
Office of Environmental Restoration and Waste Management
Attn: M. Frei, EM-34 / Trevion II
 Director, Waste Management Projects
Washington, DC 20585-0002

US Department of Energy
Office of Environmental Restoration and Waste Management
Attn: J. Lytle, EM-30 / Trevion II
Washington, DC 20585-0002

US Department of Energy
Office of Environmental Restoration and Waste Management
Attn: S. Schneider, EM-342
 Trevion II
Washington, DC 20585-0002

US Department of Energy (3)
WIPP Task Force
Attn: G.H. Daly
 S. Fucigna
 B. Bower
12800 Middlebrook Rd., Suite 400
Germantown, MD 20874

US Department of Energy (4)
Office of Environment, Safety and Health
Attn: R.P. Berube, EH-20
 C. Borgstrom, EH-25
 R. Pelletier, EH-231
 K. Taimi, EH-232
Washington, DC 20585

US Department of Energy (6)
WIPP Project Integration Office
Attn: S. Alcorn
 W.J. Arthur III
 J. Coffey
 L.W. Gage
 P.J. Higgins
 D.A. Olona
PO Box 5400
Albuquerque, NM 87115-5400

US Department of Energy (2)
WIPP Project Integration Satellite Office
Attn: R. Batra
 R. Becker
PO Box 3090, Mail Stop 525
Carlsbad, NM 88221-3090

US Department of Energy (10)
WIPP Project Site Office (Carlsbad)
Attn: A. Hunt (4)
 V. Daub (4)
 J. Lippis
 K. Hunter
PO Box 3090
Carlsbad, NM 88221-3090

Dist-1
US Nuclear Regulatory Commission (4)
Advisory Committee on Nuclear Waste
Attn: D. Moeller
M.J. Steindler
P.W. Pomeroy
W.J. Hinze
7920 Norfolk Ave.
Bethesda, MD 20814

Defense Nuclear Facilities Safety Board
Attn: D. Winters
625 Indiana Ave. NW
Suite 700
Washington, DC 20004

Nuclear Waste Technical Review Board
Attn: Library (2)
1100 Wilson Blvd.
Suite 910
Arlington, VA 22209-2297

State Agencies

New Mexico Bureau of Mines and Mineral Resources
Socorro, NM 87801

New Mexico Energy, Minerals and Natural Resources Department
Attn: Librarian
2040 South Pacheco
Santa Fe, NM 87505

New Mexico Energy, Minerals and Natural Resources Department
New Mexico Radioactive Task Force (2)
(Governor’s WIPP Task Force)
Attn: A. Lockwood, Chairman
C. Wentz, Policy Analyst
2040 South Pacheco
Santa Fe, NM 87505

Bob Forrest
Mayor, City of Carlsbad
PO Box 1569
Carlsbad, NM 88221

Carlsbad Department of Development
Executive Director
Attn: C. Bernard
PO Box 1090
Carlsbad, NM 88221

New Mexico Environment Department
Secretary of the Environment (3)
Attn: J. Espinosa
PO Box 968
1190 St. Francis Drive
Santa Fe, NM 87503-0968

New Mexico Environment Department
Attn: P. McCasland
WIPP Project Site Office
PO Box 3090
Carlsbad, NM 88221-3090

New Mexico State Engineer's Office
Attn: M. Chudnoff
PO Box 25102
Santa Fe, NM 87504-5102

Environmental Evaluation Group (5)
Attn: R. Neill
7007 Wyoming Blvd. NE, Suite F-2
Albuquerque, NM 87109

Advisory Committee on Nuclear Facility Safety

John F. Ahearn
Executive Director, Sigma Xi
99 Alexander Drive
Research Triangle Park, NC 27709

James E. Martin
109 Observatory Road
Ann Arbor, MI 48109

WIPP Committee, National Research Council’s Board on Radioactive Waste Management

National Research Council (2)
Board on Radioactive Waste Management
Attn: C.A. Anderson
I.B. Alterman
2101 Constitution Ave. NW
Harris Bldg. HA 456
Washington, DC 20418

Howard Adler
Oxyrase, Inc.
11020 Solway School Rd.
Knoxville, TN 37931

John O. Blomeke
3833 Sandy Shore Drive
Lenoir City, TN 37771-9803
John D. Bredehoeft
Western Region Hydrologist
Water Resources Division
US Geological Survey (M/S 439)
345 Middlefield Road
Menlo Park, CA 94025

Fred M. Ernsberger
1325 NW Tenth Ave.
Gainesville, FL 32605

Rodney C. Ewing
Department of Geology
University of New Mexico
Albuquerque, NM 87131

Charles Fairhurst
Department of Civil and Mineral Engineering
University of Minnesota
500 Pillsbury Dr. SE
Minneapolis, MN 55455-0220

B. John Garrick
PLG, Incorporated
4590 MacArthur Blvd., Suite 400
Newport Beach, CA 92660-2027

Leonard F. Konikow
US Geological Survey
431 National Center
Reston, VA 22092

Jeremiah O'Driscoll
Jody, Incorporated
505 Valley Hill Drive
Atlanta, GA 30350

Christopher G. Whipple
ICF Kaiser Engineers
1800 Harrison St. 7th Floor
Oakland, CA 94612-3430

Thomas A. Zordan
Zordan Associates, Inc.
3807 Edinburg Dr.
Murrysville, PA 15668

Performance Assessment Peer Review Panel

G. Ross Heath
College of Ocean & Fishery Sciences
University of Washington
583 Henderson Hall, HN-15
Seattle, WA 98195

Thomas H. Pigford
Department of Nuclear Engineering
4159 Etcheverry Hall
University of California
Berkeley, CA 94720

Thomas A. Cotton
JK Research Associates, Inc.
4429 Butterworth Place NW
Washington, DC 20016

Robert J. Budnitz
President, Future Resources Associates, Inc.
2000 Center Street
Suite 418
Berkeley, CA 94704

C. John Mann
Department of Geology
245 Natural History Bldg.
1301 West Green Street
University of Illinois
Urbana, IL 61801

Frank W. Schwartz
Department of Geology and Mineralogy
The Ohio State University
Scott Hall
1090 Carmack Rd.
Columbus, OH 43210

National Laboratories

Argonne National Laboratory (2)
Attn: A. Smith
D. Tomasko
9700 South Cass, Bldg. 201
Argonne, IL 60439

Battelle Pacific Northwest Laboratory (2)
Attn: S. Bates
R.E. Westerman
MSIN P8-44
Battelle Boulevard
Richland, WA 99352

Idaho National Engineering Laboratory (2)
Attn: H. Loo
R. Klinger
Mail Stop 5108
Idaho Falls, ID 83403-4000
Los Alamos National Laboratory (5)
Attn: B. Erdal, INC-12
M. Ennis, HS-12
Mail Stop J900
S. Kosiewicz, EM-7
Mail Stop J595
L. Soholt, EM-13
Mail Stop M992
J. Wenzel, HS-12
Mail Stop K482
PO Box 1663
Los Alamos, NM 87545

Deuel and Associates, Inc.
Attn: R.W. Prindle
7208 Jefferson NE
Albuquerque, NM 87109

Disposal Safety, Inc.
Attn: B. Ross
1660 L Street NW, Suite 314
Washington, DC 20036

Ecodynamics (3)
Attn: P. Roache
R. Blaine
K. Economy
PO Box 9229
Albuquerque, NM 87119-9229

EG & G Idaho (3)
1955 Fremont Street
Attn: C. Atwood
C. Hertzler
T.I. Clements
Idaho Falls, ID 83415

Geomatrix
Attn: K. Coppersmith
100 Pine St., Suite 1000
San Francisco, CA 94111

Golder Associates, Inc.
Attn: R. Kossik
4104 148th Avenue NE
Redmond, WA 98052

John Hart and Associates, P.A.
Attn: J.S. Hart
2815 Candelaria Road NW
Albuquerque, NM 87107

John Hart and Associates, P.A.
Attn: K. Lickliter
400-C 8th St. NW
Tacoma, WA 98439

INTERA, Inc.
Attn: A.M. LaVenue
1650 University Blvd. NE, Suite 300
Albuquerque, NM 87102

INTERA, Inc.
Attn: J.F. Pickens
6850 Austin Center Blvd., Suite 300
Austin, TX 78731

Oak Ridge National Laboratory
Transuranic Waste Manager
Attn: D.W. Turner
Bldg. 3047
PO Box 2008
Oak Ridge, TN 37831-6060

Pacific Northwest Laboratory
Attn: B. Kennedy
PO Box 999
Richland, WA 99352

Westinghouse-Savannah River Technology Center (4)
Attn: N. Bibler
J.R. Harbour
M.J. Plodinec
G.G. Wicks
Aiken, SC 29802

Corporations/Members of the Public

Battelle Memorial Institute
Attn: R. Root
J. Kircher
505 Marquette NW, Suite 1
Albuquerque, NM 87102

Benchmark Environmental Corp.
Attn: C. Frederickson
4501 Indian School NE, Suite 105
Albuquerque, NM 87110

Beta Corporation Int.
Attn: E. Bonano
6613 Esther NE
Albuquerque, NM 87109

City of Albuquerque
Public Works Department
Utility Planning Division
Attn: W.K. Summers
PO Box 1293
Albuquerque, NM 87103
INTERA, Inc.
Attn: W. Stensrud
PO Box 2123
Carlsbad, NM 88221

INTERA, Inc.
Attn: W. Nelson
101 Convention Center Dr.
Suite 540
Las Vegas, NV 89109

IT Corporation (2)
Attn: R.P. McKinney
J. Myers
Regional Office, Suite 700
5301 Central Avenue NE
Albuquerque, NM 87108

Lawrence Berkeley Laboratory
Attn: J. Long
Building 50 E
Berkeley, CA 94720

MAC Technical Services Co.
Attn: D.K. Duncan
8418 Zuni Road SE, Suite 200
Albuquerque, NM 87108

Newman and Holtzinger
Attn: C. Mallon
1615 L Street NW, Suite 1000
Washington, DC 20036

RE/SPEC, Inc. (2)
Attn: W. Coons
4775 Indian School NE, Suite 300
Albuquerque, NM 87110

RE/SPEC, Inc.
Attn: J.L. Ratigan
PO Box 725
Rapid City, SD 57709

Reynolds Electric and Engineering Company, Inc.
Attn: E.W. Kendall
Building 790
Warehouse Row
PO Box 98521
Las Vegas, NV 89193-8521

SAIC
Attn: H.R. Pratt
10260 Campus Point Drive
San Diego, CA 92121

SAIC
Attn: C.G. Pflum
101 Convention Center Dr.
Las Vegas, NV 89109

SAIC (3)
Attn: M. Davis
R. Guzowski
J. Tollison
2109 Air Park Road SE
Albuquerque, NM 87106

SAIC (2)
Attn: J. Young
D. Lester
18706 North Creek Parkway, Suite 110
Bothell, WA 98011

Southwest Research Institute
Nuclear Waste Regulatory Analysis (2)
Attn: P.K. Nair
6220 Culebra Road
San Antonio, TX 78228-0510

Systems, Science, and Software (2)
Attn: E. Peterson
P. Lagus
Box 1620
La Jolla, CA 92038

TASC
Attn: S.G. Oston
55 Walkers Brook Drive
Reading, MA 01867

Tech Reps, Inc. (6)
Attn: J. Chapman
C. Crawford
D. Marchand
T. Peterson
J. Stikar
D. Scott
5000 Marble NE, Suite 222
Albuquerque, NM 87110

Tolan, Beeson & Associates
Attn: T.L. Tolan
2320 W. 15th Avenue
Kennewick, WA 99337
TRW Environmental Safety Systems (2)
Attn: I. Sacks, Suite 800
L. Wildman, Suite 1300
2650 Park Tower Drive
Vienna, VA 22180-7306

Sanford Cohen and Associates
Attn: J. Channell
7101 Carriage Rd NE
Albuquerque, NM 87109

Westinghouse Electric Corporation (5)
Attn: Library
C. Cox
L. Fitch
B.A. Howard
R.F. Kehrman
PO Box 2078
Carlsbad, NM 88221

Westinghouse Hanford Company
Attn: D.E. Wood, MSIN HO-32
PO Box 1970
Richland, WA 99352

Western Water Consultants
Attn: P.A. Rechard
PO Box 4128
Laramie, WY 82071

Western Water Consultants
Attn: D. Fritz
1949 Sugarland Drive #134
Sheridan, WY 82801-5720

P. Drez
8816 Cherry Hills Road NE
Albuquerque, NM 87111

David Lechel
9600 Allende Rd. NE
Albuquerque, NM 87109

C.A. Marchese
PO Box 21790
Albuquerque, NM 87154

Arend Meijer
3821 Anderson SE
Albuquerque, NM 87108

D.W. Powers
Star Route Box 87
Anthony, TX 79821

Shirley Thieda
PO Box 2109, RR1
Bernalillo, NM 87004

Jack Urich
c/o CARD
144 Harvard SE
Albuquerque, NM 87106

Universities

University of California
Mechanical, Aerospace, and
Nuclear Engineering Department (2)
Attn: W. Kastenberg
D. Browne
5532 Boelter Hall
Los Angeles, CA 90024

University of California
Engineering and Applied Science
Attn: D. Okrent
48-121A Engineering IV
Los Angeles, CA 90024-1597

University of California
Mine Engineering Department
Rock Mechanics Engineering
Attn: N. Cook
Berkeley, CA 94720

University of Hawaii at Hilo
Business Administration
Attn: S. Hora
Hilo, HI 96720-4091

University of Illinois
Department of Geology
Attn: C. Bethke
1301 W. Green St.
Urbana, IL 61801

University of New Mexico
Geology Department
Attn: Library
Albuquerque, NM 87131
University of New Mexico
Research Administration
Attn: H. Schreyer
102 Scholes Hall
Albuquerque, NM 87131

University of New Mexico
Zimmerman Library
Government Publications Department
Albuquerque, NM 87131

NEA/Performance Assessment Advisory Group (PAAG)

P. Duerden
ANSTO
Lucas Heights Research Laboratories
Private Mail Bag No. 1
Menai, NSW 2234
AUSTRALIA

Gordon S. Linsley
Division of Nuclear Fuel Cycle and Waste Management
International Atomic Energy Agency
PO Box 100
A-1400 Vienna, AUSTRIA

Nicolo Cadelli
Commission of European Communities
200, Rue de la Loi
B-1049 Brussels, BELGIUM

R. Heremans
Organisme Nationale des Déchets Radioactifs et des Matières Fissiles (ONDRAF)
Place Madou 1, Boitec 24/25
B-1030 Brussels, BELGIUM

J. Marivoet
Centre d'Etudes de l'Energie Nucléaire (CEN/SCK)
Boeretang 200
B-2400 Mol, BELGIUM

P. Conlon
Waste Management Division
Atomic Energy Control Board (AECB)
PO Box 1046
Ottawa, Ontario KIP 559, CANADA

A.G. Wikjord
Manager, Environmental and Safety Assessment Branch
Atomic Energy of Canada Limited
Whiteshell Research Establishment
Pinawa, Manitoba ROE 1L0, CANADA

Dist-8
Teollisuuden Voima Oy (TVO) (2)
Attn: Timo Aikas
Jukka-Pekka Salo
Annankatu 42 C
SF-00100 Helsinki Suomi, FINLAND

Timo Vieno
Technical Research Centre of Finland (VTT)
Nuclear Energy Laboratory
PO Box 208
SF-02151 Espoo, FINLAND

Division de la Sécurité et de la Protection de l'Environnement (DSPE)
Commissariat à l'Energie Atomique
Agence Nationale pour la Gestion des Déchets Radioactifs (ANDRA) (2)
Attn: Gérard Ouzounian
M. Claude Ringeard
Route du Panorama Robert Schuman
B. P. No. 38
F-92266 Fontenay-aux-Roses Cedex
FRANCE

Claudio Pescatore
Division of Radiation Protection and Waste Management
OECD Nuclear Energy Agency
38, Boulevard Suchet
F-75016 Paris
FRANCE

M. Dominique Greneche
Commissariat à l'Energie Atomique
IPSN/DAS/SASICC/SAED
B. P. No. 6
F-92265 Fontenay-aux-Roses Cedex
FRANCE

Robert Fabriol
Bureau de Recherches Géologiques et Minières (BRCM)
B. P. 6009
45060 Orléans Cedex 2
FRANCE

P. Bogorinski
Gesellschaft für Reaktorsicherheit (GRS) MBH
Schwerternergasse 1
D-5000 Köln 1, GERMANY

R. Storck
GSF - Institut für Tieflagerung
Theodor-Heuss-Strabe 4
D-3300 Braunschweig, GERMANY

Ferrucio Gera
ISMES S.p.A
Via del Crociferi 44
I-00187 Rome, ITALY

Hiroyuki Umeki
Isolation System Research Program
Radioactive Waste Management Project
Power Reactor and Nuclear Fuel Development Corporation (PNC)
1-9-13, Akasaka, Minato-ku
Tokyo 107
JAPAN

Tönis Papp
Swedish Nuclear Fuel and Waste Management Co.
Box 5864
S 102 48 Stockholm
SWEDEN

Conny Hägg
Swedish Radiation Protection Institute (SSI)
Box 60204
S-104 01 Stockholm, SWEDEN

J. Hadermann
Paul Scherrer Institute
Waste Management Programme
CH-5232 Villigen PSI
SWITZERLAND

J. Vigfusson
HSK-Swiss Nuclear Safety Inspectorate
Federal Office of Energy
CH-5232 Villigen-HSK
SWITZERLAND

D. E. Billington
Departmental Manager-Assessment Studies
Radwaste Disposal R&D Division
AEA Decommissioning & Radwaste
Harwell Laboratory, B60
Didcot Oxfordshire OX11 ORA
UNITED KINGDOM
N. A. Chapman
Intera Information Technologies
Park View House
14B Burton Street
Melton Mowbray
Leicestershire LE13 1AE
UNITED KINGDOM

Daniel A. Galson
Galson Sciences Ltd.
35, Market Place
Oakham
Leicestershire LE15 6DT
UNITED KINGDOM

David P. Hodgkinson
Intera Information Technologies
45 Station Road, Chiltern House
Henley-on-Thames
Oxfordshire RG9 1AT
UNITED KINGDOM

Brian G.J. Thompson
Department of the Environment; Her Majesty's Inspectorate of Pollution
Room A5.33, Romney House
43 Marsham Street
London SW1P 2PY, UNITED KINGDOM

Intera Information Technologies
Attn: M.J.Apted
3609 South Wadsworth Blvd.
Denver, CO 80235

US Nuclear Regulatory Commission (2)
Attn: R. Codell
N. Eisenberg
Mail Stop 4-H-3
Washington, DC 20555

Battelle Pacific Northwest Laboratories
Attn: P.W. Eslinger
MS K2-32
PO Box 999
Richland, WA 99352

Center for Nuclear Waste Regulatory Analysis (CNWRA)
Southwest Research Institute
Attn: B. Sagar
PO Drawer 28510
6220 Culebra Road
San Antonio, TX 78284

Geostatistics Expert Working Group (GXG)

Rafael L. Bras
R.L. Bras Consulting Engineers
44 Percy Road
Lexington, MA 02173

Jesus Carrera
Universidad Politécnica de Cataluña
E.T.S.I. Caminos
Jordi, Girona 31
E-08034 Barcelona, SPAIN

Gedeon Dagan
Department of Fluid Mechanics and Heat Transfer
Tel Aviv University
PO Box 39040
Ramat Aviv, Tel Aviv 69978
ISRAEL

Ghislain de Marsily (GXG Chairman)
University Pierre et Marie Curie
Laboratoire de Geologie Applique
4, Place Jussieu
T.26 - 5e etage
75252 Paris Cedex 05
FRANCE

Alain Galli
Centre de Geostatistique
Ecole des Mines de Paris
35 Rue St. Honore
77035 Fontainebleau, FRANCE

Christian Ravenne
Geology and Geochemistry Division
Institut Francais du Pétrole
1 & 4, Av. de Bois-Préau B.P. 311
92506 Rueil Malmaison Cedex
FRANCE

Peter Grindrod
INTERA Information Technologies Ltd.
Chiltern House
45 Station Road
Henley-on-Thames
Oxfordshire, RG9 1AT, UNITED KINGDOM
Foreign Addresses

Studiecentrum Voor Kernenergie
Centre D'Énergie Nucleaire
Attn: A. Bonne
SCK/CEN
Boeretang 200
B-2400 Mol, BELGIUM

Atomic Energy of Canada, Ltd. (3)
Whiteshell Research Establishment
Attn: M.E. Stevens
B.W. Goodwin
D. Wushke
Pinewa, Manitoba ROE 1LO, CANADA

Juhani Vira
Teollisuuden Voima Oy (TVO)
Annankatu 42 C
SF-00100 Helsinki Suomi
FINLAND

Jean-Pierre Olivier
OECD Nuclear Energy Agency (2)
38, Boulevard Suchet
F-75016 Paris, FRANCE

D. Alexandre, Deputy Director
ANDRA
31 Rue de la Federation
75015 Paris, FRANCE

Claude Sombret
Centre D'Études Nucleaires
De La Vallee Rhone
CEN/VALRHO
S.D.H.A. B.P. 171
30205 Bagnols-Sur-Ceze, FRANCE

Commissariat a L’Energie Atomique
Attn: D. Alexandre
Centre d’Études de Cadarache
13108 Saint Paul Lez Durance Cedex
FRANCE

Bundesministerium für Forschung und Technologie
Postfach 200 706
5300 Bonn 2, GERMANY

Dist-12
Bundesanstalt für Geowissenschaften und Rohstoffe
Attn: M. Langer
Postfach 510 153
D-30631 Hannover, GERMANY

Gesellschaft für Anlagen und Reaktorsicherheit (GRS) (2)
Attn: B. Baltes
Schwertnergasse 1
D-50667 Cologne, GERMANY

Institut für Tieflagerung (2)
Attn: K. Kuhn
Theodor-Heuss-Strasse 4
D-3300 Braunschweig
GERMANY

Physikalisch-Technische Bundesanstalt
Attn: P. Brenneke
Postfach 33 45
D-3300 Braunschweig
GERMANY

Shingo Tashiro
Japan Atomic Energy Research Institute
Tokai-Mura, Ibaraki-Ken
319-11, JAPAN

Netherlands Energy Research Foundation (ECN)
Attn: L.H. Vons
3 Westerdouwweg
PO Box 1
1755 ZG Petten
THE NETHERLANDS

Johan Andersson
Swedish Nuclear Power Inspectorate
Statens Kärnkraftinspektion (SKI)
Box 27106
S-102 52 Stockholm
SWEDEN

Fred Karlsson
Svensk Kärnbränslefordonsförvaltning AB
Project KBS
Box 5864
S-102 48 Stockholm
SWEDEN

Nationale Genossenschaft für die Lagerung Radioaktiver Abfälle (2)
Attn: S. Vomvoris
P. Zuidema
Hardstrasse 73
CH-5430 Wettlingen
SWITZERLAND

AEA Technology
Attn: J.E. Tinson
B4244 Harwell Laboratory
Didcot, Oxfordshire OX11 ORA
UNITED KINGDOM

AEA Technology
Attn: J.H. Rees
D5W/29 Culham Laboratory
Abington
Oxfordshire OX14 3DB
UNITED KINGDOM

AEA Technology
Attn: W.R. Rodwell
044/A31 Winfrith Technical Centre
Dorchester
Dorset DT2 8DH, UNITED KINGDOM

D.R. Knowles
British Nuclear Fuels, plc
Risley, Warrington
Cheshire WA3 6AS, 1002607
UNITED KINGDOM

Internal

<table>
<thead>
<tr>
<th>MS</th>
<th>Org.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0101</td>
<td>0001</td>
<td>A. Narath</td>
</tr>
<tr>
<td>0102</td>
<td>0002</td>
<td>O.E. Jones</td>
</tr>
<tr>
<td>0827</td>
<td>1502</td>
<td>P.J. Hommert</td>
</tr>
<tr>
<td>0827</td>
<td>1511</td>
<td>D.K. Gartling</td>
</tr>
<tr>
<td>0127</td>
<td>4511</td>
<td>D.P. Garber</td>
</tr>
<tr>
<td>0724</td>
<td>6000</td>
<td>D.L. Hartley</td>
</tr>
<tr>
<td>1324</td>
<td>6115</td>
<td>P.B. Davies</td>
</tr>
<tr>
<td>1324</td>
<td>6115</td>
<td>R.L. Beauheim</td>
</tr>
<tr>
<td>0750</td>
<td>6118</td>
<td>H.R. Westrich</td>
</tr>
<tr>
<td>1320</td>
<td>6119</td>
<td>Staff (14)</td>
</tr>
<tr>
<td>1322</td>
<td>6121</td>
<td>J.R. Tillerson</td>
</tr>
<tr>
<td>1322</td>
<td>6121</td>
<td>Staff (7)</td>
</tr>
<tr>
<td>1337</td>
<td>6300</td>
<td>D.E. Ellis</td>
</tr>
<tr>
<td>1335</td>
<td>6302</td>
<td>L.E. Shepherd</td>
</tr>
<tr>
<td>1335</td>
<td>6303</td>
<td>S.Y. Pickering</td>
</tr>
<tr>
<td>1335</td>
<td>6303</td>
<td>W.D. Weart</td>
</tr>
<tr>
<td>1335</td>
<td>6305</td>
<td>S.A. Goldstein</td>
</tr>
</tbody>
</table>

Dist-13
A.R. Lappin
A.L. Stevens
F.W. Bingham
L.S. Costin
P.A. Davis
WIPP Central Files (100)
D.R. Anderson
P. Swift (20)
B. Baker
J. Garner
J. Helton
D. Rudeen
Staff (30)
V. Harper-Slaboszewicz
Staff (3)
R.C. Lincoln
Staff (9)
D.R. Schafer
J.T. Holmes
Staff (4)
R.E. Thompson
S.E. Sharpton
N.R. Ortiz
R.M. Cranwell
R.L. Iman
C. Leigh
M.S.Y. Chu
R.E. Luna, Acting
Technical Library (5)
Technical Publications
Document Processing for
DOE/OSTI (10)
Central Technical Files
END

4/20/94

hb/02/12

Dated

Filmed