X-ray laser interferometry for probing high-density plasmas

PDF Version Also Available for Download.

Description

Collisionally pumped soft x-ray lasers now operate over a wavelength range extending from 4-40 nm. With the recent advances in the development of multilayer mirrors and beamsplitters in the soft x-ray regime, the authors can utilize the unique properties of x-ray lasers to study large, rapidly evolving laser-driven plasmas with high electron densities. Using a neon-like yttrium x-ray laser which operates at a wavelength of 15.5 nm, they have performed a series of x-ray laser interferometry experiments to characterize plasmas relevant to inertial confinement fusion. In this paper the authors describe experiments using a soft x-ray laser interferometer, operated in ... continued below

Physical Description

11 p.

Creation Information

Wan, A.S.; Da Silva, L.B. & Barbee, T.W. Jr. June 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Collisionally pumped soft x-ray lasers now operate over a wavelength range extending from 4-40 nm. With the recent advances in the development of multilayer mirrors and beamsplitters in the soft x-ray regime, the authors can utilize the unique properties of x-ray lasers to study large, rapidly evolving laser-driven plasmas with high electron densities. Using a neon-like yttrium x-ray laser which operates at a wavelength of 15.5 nm, they have performed a series of x-ray laser interferometry experiments to characterize plasmas relevant to inertial confinement fusion. In this paper the authors describe experiments using a soft x-ray laser interferometer, operated in the Mach-Zehnder configuration, to study CH plasmas and exploding foil targets commonly used for x-ray laser targets. The two-dimensional density profiles obtained from the interferograms allow the authors to validate and benchmark their numerical models used to study the physics of laser-plasma interactions.

Physical Description

11 p.

Notes

OSTI as DE95017295

Source

  • 40. annual meeting of the Society of Photo-Optical Instrumentation Engineers, San Diego, CA (United States), 9-14 Jul 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95017295
  • Report No.: UCRL-JC--121200
  • Report No.: CONF-950793--37
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 104972
  • Archival Resource Key: ark:/67531/metadc624887

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Feb. 23, 2016, 12:58 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wan, A.S.; Da Silva, L.B. & Barbee, T.W. Jr. X-ray laser interferometry for probing high-density plasmas, article, June 1, 1995; California. (digital.library.unt.edu/ark:/67531/metadc624887/: accessed October 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.