Nonaqueous Electrolyte Development for Electrochemical Capacitors

PDF Version Also Available for Download.

Description

The objectives of this project were to demonstrate and develop new nonaqueous electrolytes that enable the development of high power (in excess of 2 kW/kg) and high energy (in excess of 8 Wh/kg) capacitors. Electrochemical capacitors are attractive to use because of their long cycle life and inherent high-power (or fast charge/discharge) capabilities. To realize the inherent high-power nature of the capacitor, the resistance of the capacitor needs to be low. The main focus of this project is on the ionic part of capacitor resistance, which is largely determined by the electrolyte, especially the electrolyte's conductivity. To achieve the objectives ... continued below

Physical Description

846 Kilobytes pages

Creation Information

Xu, K.; Ding, S. P. & Jow, T. R. September 1, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 84 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The objectives of this project were to demonstrate and develop new nonaqueous electrolytes that enable the development of high power (in excess of 2 kW/kg) and high energy (in excess of 8 Wh/kg) capacitors. Electrochemical capacitors are attractive to use because of their long cycle life and inherent high-power (or fast charge/discharge) capabilities. To realize the inherent high-power nature of the capacitor, the resistance of the capacitor needs to be low. The main focus of this project is on the ionic part of capacitor resistance, which is largely determined by the electrolyte, especially the electrolyte's conductivity. To achieve the objectives of this project, two approaches were used. The first was to search for the proper solvent mixtures within the commercially available quaternary ammonium salts such as tetraethyl ammonium tetrafluoroborate (Et4NBF4) or tetraethyl ammonium hexafluorophosphate (Et4NPF6). The second approach was to use the commonly available solvent system s but develop new salts. Substantial advances were made in quaternary ammonium salts and solvent systems were identified that can withstand high voltage operations. However, improvement in the salt alone is not sufficient. Improvements in the low-temperature stability of a capacitor rely not only on the salts but also on the solvents. Likewise, the high-temperature stability of the capacitor will depend not only on the salts but also on the solvents and carbon electrode materials.

Physical Description

846 Kilobytes pages

Notes

OSTI as DE00015050

Source

  • Other Information: PBD: 1 Sep 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ID/13451
  • Grant Number: AI07-96ID13451
  • DOI: 10.2172/15050 | External Link
  • Office of Scientific & Technical Information Report Number: 15050
  • Archival Resource Key: ark:/67531/metadc624861

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Nov. 3, 2015, 2:42 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 84

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Xu, K.; Ding, S. P. & Jow, T. R. Nonaqueous Electrolyte Development for Electrochemical Capacitors, report, September 1, 1999; United States. (digital.library.unt.edu/ark:/67531/metadc624861/: accessed October 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.