The parallelization of an advancing-front, all-quadrilateral meshing algorithm for adaptive analysis

PDF Version Also Available for Download.

Description

The ability to perform effective adaptive analysis has become a critical issue in the area of physical simulation. Of the multiple technologies required to realize a parallel adaptive analysis capability, automatic mesh generation is an enabling technology, filling a critical need in the appropriate discretization of a problem domain. The paving algorithm`s unique ability to generate a function-following quadrilateral grid is a substantial advantage in Sandia`s pursuit of a modified h-method adaptive capability. This characteristic combined with a strong transitioning ability allow the paving algorithm to place elements where an error function indicates more mesh resolution is needed. Although the ... continued below

Physical Description

12 p.

Creation Information

Lober, R.R.; Tautges, T.J. & Cairncross, R.A. November 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The ability to perform effective adaptive analysis has become a critical issue in the area of physical simulation. Of the multiple technologies required to realize a parallel adaptive analysis capability, automatic mesh generation is an enabling technology, filling a critical need in the appropriate discretization of a problem domain. The paving algorithm`s unique ability to generate a function-following quadrilateral grid is a substantial advantage in Sandia`s pursuit of a modified h-method adaptive capability. This characteristic combined with a strong transitioning ability allow the paving algorithm to place elements where an error function indicates more mesh resolution is needed. Although the original paving algorithm is highly serial, a two stage approach has been designed to parallelize the algorithm but also retain the nice qualities of the serial algorithm. The authors approach also allows the subdomain decomposition used by the meshing code to be shared with the finite element physics code, eliminating the need for data transfer across the processors between the analysis and remeshing steps. In addition, the meshed subdomains are adjusted with a dynamic load balancer to improve the original decomposition and maintain load efficiency each time the mesh has been regenerated. This initial parallel implementation assumes an approach of restarting the physics problem from time zero at each interaction, with a refined mesh adapting to the previous iterations objective function. The remeshing tools are being developed to enable real time remeshing and geometry regeneration. Progress on the redesign of the paving algorithm for parallel operation is discussed including extensions allowing adaptive control and geometry regeneration.

Physical Description

12 p.

Notes

OSTI as DE96002084

Source

  • 4. international meshing roundtable, Albuquerque, NM (United States), 16-17 Oct 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96002084
  • Report No.: SAND--95-2360C
  • Report No.: CONF-9510233--1
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 125091
  • Archival Resource Key: ark:/67531/metadc624845

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 13, 2016, 4:11 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 12

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Lober, R.R.; Tautges, T.J. & Cairncross, R.A. The parallelization of an advancing-front, all-quadrilateral meshing algorithm for adaptive analysis, article, November 1, 1995; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc624845/: accessed August 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.