Plant rhizosphere effects on metal mobilization and transport. 1998 annual progress report

PDF Version Also Available for Download.

Description

'Information on the mechanism of how plants mobilize, uptake, and metabolize metal ions is very limited. Especially deficient is the understanding of these processes involving pollutant metal ions and interactions among these ions. Based on the current knowledge regarding nutrient ions, it is clear that elucidation of rhizospheric processes such as exudation of organic ligands by plant roots and plant metabolism/adaptation involving these biogenic chelators is critically important. A mechanistic insight into these processes will advance knowledge in microbe-plant host interactions and how metal ions are mobilized, immobilized, and sequestered by these interactions. This, in turn, is essential to applications ... continued below

Physical Description

4 pages

Creation Information

Fan, T.W.M. June 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

'Information on the mechanism of how plants mobilize, uptake, and metabolize metal ions is very limited. Especially deficient is the understanding of these processes involving pollutant metal ions and interactions among these ions. Based on the current knowledge regarding nutrient ions, it is clear that elucidation of rhizospheric processes such as exudation of organic ligands by plant roots and plant metabolism/adaptation involving these biogenic chelators is critically important. A mechanistic insight into these processes will advance knowledge in microbe-plant host interactions and how metal ions are mobilized, immobilized, and sequestered by these interactions. This, in turn, is essential to applications such as phytobioremediation and microbioremediation of metal ion pollution. Root exudation also serves many other important rhizosphere functions including energy supply for microbial degradation of organic pollutants, structuring of microbial community, and the formation of soil humic materials which are considered to be a major sink for both organic and inorganic pollutants. How root exudates function is critically dependent on the chemical nature of exudate components. Therefore, a comprehensive characterization of all major exudate components, regardless of their chemical class, should facilitate the development and implementation of bioremediation for both organic and inorganic pollutants. Therefore, the objectives of this project are: (1) To obtain a comprehensive composition of major organic components in plant root exudates as a function of different metal ions; (2) To examine plant metabolic response(s) to these metal ion treatments, with emphasis on biosynthetic pathways of organic ligands; and (3) To investigate the effect(s) of soil microbial (e.g. mycorrhizae) association on (1) and (2).'

Physical Description

4 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE00013476
  • Report No.: EMSP-55118--98
  • Grant Number: NONE
  • DOI: 10.2172/13476 | External Link
  • Office of Scientific & Technical Information Report Number: 13476
  • Archival Resource Key: ark:/67531/metadc624834

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Jan. 10, 2018, 3:45 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Fan, T.W.M. Plant rhizosphere effects on metal mobilization and transport. 1998 annual progress report, report, June 1, 1998; Davis, California. (digital.library.unt.edu/ark:/67531/metadc624834/: accessed October 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.