The Effect of Quench Rate on the Toxicity Characteristic Leaching Procedures (TCLP), PCT Durability of Environmental Waste Glass

by
C. A. Cicero
Westinghouse Savannah River Company
Savannah River Site
Aiken, South Carolina 29808
D. F. Bickford
A. R. Jurgenson
J. L. Resce
Clemson University
SC USA
B. M. Wolff
Clemson University
SC USA

A document prepared for I&EC SPECIAL SYMPOSIUM
SEVENTH ANNUAL SYMPOSIUM ON EMERGING TECHNOLOGIES IN HAZARDOUS WASTE MANAGEMENT at Atlanta from 09/17/95 - 09/20/95.

DOE Contract No. DE-AC09-89SR18035

This paper was prepared in connection with work done under the above contract number with the U. S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U. S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P. O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401.

Available to the public from the National Technical Information Service, U. S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161
THE EFFECT OF QUENCH RATE ON THE TCLP AND PCT DURABILITY OF ENVIRONMENTAL WASTE GLASS

J.L. Resce and B.M. Wolff
Environmental Systems Engineering Department
Clemson University, Clemson, SC 29634

A.R. Jurgensen, C.M. Cicero, and D.F. Bickford
Westinghouse Savannah River Company
Aiken, SC 29808

The effect of quench rate and the resulting devitrification on the durability of environmental waste glasses has been examined for a set of 16 model glasses. The glasses have been derived from a large glass composition space, i.e. "hyperspace glasses," which were previously developed to serve as a simplified model for studying the durability of glassy wasteforms which might result from vitrification. In this study, a subset of this space has been examined for chemical durability by both the PCT and TCLP tests. This subspace is composed of six variable components Fe\textsubscript{2}O\textsubscript{3}, SiO\textsubscript{2}, Al\textsubscript{2}O\textsubscript{3}, B\textsubscript{2}O\textsubscript{3}, Na\textsubscript{2}O, and CaO and three fixed-level components BaO, PbO, and NiO. The sum of the six variable oxides always total to 95 mole percent, while, BaO and NiO levels are fixed at 2 mole percent each and PbO is 1 mole percent. The preparation and characterization of these glasses has been previously described. Their approximate oxide composition, in mole percent, is given in Table 1. These glasses can be classified into two groups, those with low and those with higher levels of Fe\textsubscript{2}O\textsubscript{3}.

The glass melts were cast into molds to produce disks, 40 mm in diameter by 6 mm in height. The disks were then quenched at two different rates. Glasses quenched at a medium rate were placed directly into a box furnace at 450° C for 30 minutes and the furnace was then turned off. The glasses then cooled to room temperature in about 2 hours. The glasses quenched at a slow rate were placed in a furnace at 650° C for 8 hours and then slowly cooled to room temperature. The crystallinity of the glasses was determined by powder x-ray diffraction so that they could be classified into three categories: (1) "amorphous," (2) "crystalline," and (3) "more crystalline."

Chemical durability testing was carried out by both the 7-Day Product Consistency Test (PCT) and the TCLP test. The sodium normalized elemental release rate (NaNRR), in g·m-2·d-1, was determined from Equation 1,

\begin{equation}
\text{NaNRR} = \frac{C_{\text{Na}}}{f_{\text{Na}}(S\Delta g/V_L)t}
\end{equation}

where C_{Na} is the concentration of elemental sodium in the leachate, in g·m-2; V_L is the volume of the leachate; f_{Na} is the weight fraction of sodium in the original glass; $S\Delta g$ is the surface area of the glass; and t is leaching time. The $S\Delta g/V_L$ ratio is assumed to be 1950 m-1.

The PCT NaNRR and the TCLP releases of both Ni and Ba for both the low and high Fe\textsubscript{2}O\textsubscript{3} glasses are reported in Figures 1 and 2, respectively. These results show that there is almost no devitrification with either quench rate for the low iron glasses and that there is negligible change in durability. For the high iron glasses, however, some of the slow quenched glasses are significantly more devitrified and crystalline. In some glasses, this increased crystallinity is found to lower the NaNRR and Ba TCLP durability. TCLP Ni release was negligible in both cases.
TABLE 1. Target Mole Percent Oxide Composition of Glasses

<table>
<thead>
<tr>
<th>Glass</th>
<th>Target Oxide Composition of Glasses, Mole %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SiO₂</td>
</tr>
<tr>
<td>2LOO</td>
<td>63</td>
</tr>
<tr>
<td>2LHO</td>
<td>54</td>
</tr>
<tr>
<td>2LOH</td>
<td>53</td>
</tr>
<tr>
<td>2LHH</td>
<td>44</td>
</tr>
<tr>
<td>2HOO</td>
<td>63</td>
</tr>
<tr>
<td>2HHO</td>
<td>54</td>
</tr>
<tr>
<td>2HOH</td>
<td>53</td>
</tr>
<tr>
<td>2HHH</td>
<td>44</td>
</tr>
<tr>
<td>4LOO</td>
<td>56</td>
</tr>
<tr>
<td>4LHO</td>
<td>48</td>
</tr>
<tr>
<td>4LOH</td>
<td>48.8</td>
</tr>
<tr>
<td>4LHH</td>
<td>39.8</td>
</tr>
<tr>
<td>4HOO</td>
<td>56</td>
</tr>
<tr>
<td>4HHO</td>
<td>48</td>
</tr>
<tr>
<td>4HOH</td>
<td>49.5</td>
</tr>
<tr>
<td>4HHH</td>
<td>39.5</td>
</tr>
</tbody>
</table>

a. BaO, PbO, and NiO target values held fixed at 2, 1, and 2 mole %, respectively.
b. Glasses contained about 0.5 % higher Al₂O₃ than targeted due to leaching from crucibles.

ACKNOWLEDGMENT
This work was supported by the U.S. Department of Energy, Office of Technology Development (Mixed Waste Integrated Program), under Contract No. DE-AC09-88SR18035 and WSRC Subcontract No. AA00900T.

REFERENCES

Figure 1: The Effect of Devitrification on the Chemical Durability of Low Iron Glasses; (a) Sodium normalized release rate (Na-NRR) from the Product Consistency Test (PCT) in g-m²-d⁻¹, (b) Barium TCLP release, (c) Nickel TCLP release.
Figure 2: The Effect of Devitrification on the Chemical Durability of High Iron Glasses; (a) Sodium normalized release rate (Na-NRR) from the Product Consistency Test (PCT) in g·m⁻²·d⁻¹, (b) Barium TCLP release, (c) Nickel TCLP release.