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Abstract. We show how to construct a symplectic approximation to the Poincar6 map, 
using data from a symplectic integrator. We illustrate by producing a full-turn map for a 
realistic model of the Large Hadron Collider. Mapping of one turn is typically faster by a 
factor of 60 than direct integration. This allows one to follow orbits over times comparable 
to the required storage time of the beam, on a workstation computer. Fast mapping also 
allows the construction of quasi-invariant actions, which aid in estimates of long-term 
stability. 
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2. Construction of the generator 

We describe the map TO in angleaction coordinates ( I ,  4) E R$ x T", where  R+ is the 
positive real line. If TO : ( I ,  4) I+ (I!, 4') we write 

I ' = I + R ( I , 4 )  , +'=#+Q(I,$) . 
The same transformation is defined implicitly through the generator G : R$ x P + R by 
the following equations: 

I' = I + G&, 4') , 4 = 4' + GI(I,  4') , (2) 

where subscripts denote partial derivatives. To determine G we must find a solution of the 
partial differential equations 

G40, 4') = W 1 4 )  Gr(I14') = -QU,4) , (3) 

where 4 = #(I ,  4') is a solution of the second equation in (1). 
The equations (3) are solved by Fourier analysis of G 

G(I,+') = gm(I)e'(m~4') . (4) 
mEZn 

Now express the Fourier transform of G4t in terms of R through (3), and change the 
integration variable from 4' to 4: 

1. Introduction 
imgm(I)  = - e-'(mAt)R(I, 4)d4' 

The question of stability of a Hamiltonian system is simplified, at least in  a conceptual 
sense, by considering the Poincar6 map rather than the full Hamiltonian flow. In numerical 
studies this theoretical simplification might carry as well a practical advantage if it were 
possible to  make a good approximate evaluation of the map in much less time than is 
required for direct integration of the flow over one return to  the Poincar6 section. We 
explore this possible advantage, having in mind complicated systems for which accurate 
modelling is required and direct integration is expensive. Our starting point is a numerical 
algorithm to compute the flow. 

Let us denote the Poincar6 map defined directly by the given numerical flow as TO. 
We seek an approximation TI w TO in a region U of phase space. To meet the symplectic 
condition we construct the mixed-variable, canonical generator G of TI,  which defines T' 
implicitly [l, 2,3]. Attempts at explicit representations of TI have shown either excessive 
violation of symplecticity or difficulties in controlling accuracy; see Ref. [2] for a survey. 

In problems of accelerator physics, TO is defined by a tracking code which is based on 
a sympIectic integrator [4] that follows the orbit in small steps through the fields of the 
various magnets that guide the beam. For large storage rings the cost of tracking is so 
great that one cannot follow orbits for the desired storage time of the beam. Fortunately, 
the generator of an adequate approximation 2'1 M TO can be obtained from relatively 
few evaluations of TO, and TI can be iterated so quickly as to fo 
approaching the storage time. 

( 2 4 "  J ,  
(5 )  = -  (274" J, e-i(m~4+e('~4))R(I, 4) det(1 + C3o(Il+))d4 . 

This is valid if the Jacobian matrix 1 + 84 is nonsingular at all 4. Equation (5) solves our 
problem by giving gm when at least one component of m is non-zero. If m = 0, we apply 
a similar method t o  GI and get ago(I) /aI  as an integral involving 8. We then integrate 
on I t o  get go itself; a constant of integration is inconsequential. 

In practice we calculate the integral (5) by the trapezoid rule over auniform mesh in 4. 
The calculation is repeated for each I on some finite mesh {I i}  (not necessarily uniform). 
The gm(Ii) are then interpolated by spline functions to define gm( I )  as a smooth function 
of I .  Our program allows splines of arbitrary degree, thus continuous derivatives to  an 
arbitrary order. 

3. I terat ion of the Map 

To calculate T1(I,+) = (I',4') from G, we solve the second equation of (2) for Q by 
Newton's method, then substitute in the first equation to get I'. To maximize the speed 
of this process we take the following steps: (1) We throw away small terms in (4). (Among 
all Fourier modes with lmil 5 M ,  a great many are found to  be negligible, even with a 
mode cutoff as small as M = 8.) (2) We do the interpolation in I with aKronecker-product 
B-spline basis. (This saves a lot of time, since at any point only a few of the basis functions 
are nonzero.) (3) We start the Newton iteration with a good guess for 4' obtained from 
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a rough ezplicit formula for TI. (The formula is obtained by direct Fourier analysis and 
I-interpolation of To, retaining only a few modes.) 

Typically, four or five Newton iterations are sufficient to  solve (2) to computer precision. 
Note that the derivatives of G are expressed analytically, so that an accurate solution of 
the equations will imply some corresponding accuracy of symplecticity. 

4. The Large Hadron Collider as a Hamiltonian system 

In the LHC to be built at CERN, two counter-circulating proton beams of energy 7.7 TeV 
will collide to produce an energy of 15.4 TeV in the center-of-mass system. The beams 
travel in two parallel storage rings of circumference 27 km, guided by 1792 superconducting 
dipole bending magnets with a very high field strength of 8 Tesla, and 392 quadrupole 
focussing magnets. In colliding mode at full energy, the beams are stored for 10 hours, or 
4 .  lo8 turns, during which time they have about 10l2 encounters with localized nonlinear 
fields. In the injection mode at 0.45 TeV, the beams must last for 10 minutes, or 7 9 lo6 
turns. In this paper we study the injection mode, which in many respects is the more 
critical. 

The protons radiate little electromagnetic energy and therefore are well described by 
Hamiltonian mechanics. The  particles are subject to linear magnetic forces from dipoles 
and quadrupoles, and nonlinear forces from sextupoles (introduced to compensate the 
energy dependence of the focussing) and higher multipoles. The latter have a big effect and 
cannot be completely controlled, since they arise from sources such as errors in placement 
of superconducting coils. The beam is also subject to a localized, longitudinal r.f. electric 
field, which (in a storage mode) serves to bunch the beam longitudinally, and causes a 
small oscillation in energy of a single particle from turn to turn. Interparticle forces can be 
neglected in a &st approximation, except for the beam-beam interaction at the collision 
point of the two beams. In the injection mode, the beams do not collide. 

Position coordinates are referred to the design orbit, which is a periodic, linearly stable 
orbit. The time-like independent variable of Hamilton’s equations will be s, the arc length 
along the design orbit. T h e  Hamiltonian H(P,Q,s) is periodic in s with period C, the 
circumference of the design orbit. The “betatron” motion, oscillation transverse to the 
design orbit, is described by transverse displacements zi and conjugate momenta pi,  the 
latter being the slopes dzi/ds (up to a small correction). The “synchrotron” motion, 
oscillation in energy due to the r.f. field, is described by the coordinate T = t - to ,  where 
t ( s )  is the time of arrival at s, and conjugate momentum p ,  = -(E - Eo)/po, where E 
is the energy. Here to  is the time of arrival for a particle with nominal energy EO and 
corresponding momentum PO. We have a system in 3 1/2 degrees of freedom, with P = 
(pllp2,p+), Q = ( ~ 1 ~ 5 2 , ~ ) .  The motion consists essentially of three harmonic oscillators 
perturbed by nonlinear terms that are localized in s. Our Poincar6 section in the 7-d 
extended phase space is just all of the 6-d mechanical phase space at s = 0 (mod C), 
and the Poincar6 map is the “full turn map’) giving the evolution of (P, Q) over one turn. 

Although the synchrotron motion has an important effect on the betatron motion 
(since particles of different energy take different routes through nonlinear magnets), the 
latter has relatively little effect on the former. To a good approximation, the energy just 
oscillates harmonically from turn to  turn, changing only once per turn within a short r.f. 
cavity. For a first investigation we can work with a model in which the particles travel 

through most of the ring at constant p,, which at the n-th turn has the prescribed value 

The constant vs, the synchrotron tune, has the value 1/129.97 in the injection mode. 
Approximating by v, = 1/130 and ignoring the coordinate T, we then have a system with 
2 1/2 degrees of freedom, periodic in s with period 130C. We can study two-dimensional 
invariant tori and resonances on a Poincar6 section S at s = 0 (mod 130C), by techniques 
that have already proved effective in the case of pure betatron motion [5]. 

5. Energy dependent four-dimensional map for the LHC 

We report some results with this simplified model of synchrotron oscillations, but with a 
full, realistic model of the betatron motion at constant energy. We apply the construction of 
Section 2 in the betatron phase space (n = 2) taking TO to be the evolution of (pl, 51,p2, 5 2 )  

over one turn at constant pT. The map TI is determined for values of p ,  on a mesh, and 
then interpolated by splines to  provide every value that occurs in (6). Values of the Fourier 
coefficients gm(I~,12,p,)  for all 130 values of p ,  are stored for later use in map iteration, 
so as to avoid duplicate evaluations of splines in p,. The required map on the surface S 
at the synchrotron period is obtained by iterating the one-turn map 130 times. Direct 
construction of the 130 turn map is possible in principle, but probably not advisable. 

Maps are constructed on rectangles in action space, ria < Ij < l i b ,  with Iia not too 
small. A method to deal with the singularity of polar coordinates where one action vanishes 
i s  a topic for further work. For each p ,  the origin of coordinates is at the fixed point of 
the four-dimensional map; the coordinates are normal coordinates for the linear part of 
the map. 

For the LHC we construct a map for a rectangle centered at about one half of the 
short-term dynamic aperture in 2 1 , ~  (the roughly defined border of stability over a 
thousand turns or so). The domain of validity of the map allows for a 50% variation in 
initial actions Ii(0). We allow mode numbers lmil 5 8 in either dimension, and take 10 
spline interpolation points for each Ii and 6 for p,. The map construction requires 264600 
evaluations of TO at 68ms per evaluation (thus 5 hours) on an IBM Rs6000-590. The 
resulting map !Ti can be iterated in 1.2ms1 giving lo’ turns in 3.6 hours. This speed is 
sufficient to  study many orbits over the required beam lifetime of the storage mode. It is 
also sufficient to  compute a quasi-invariant torus on the section S in 20 minutes, using the 
method of Ref. [5] with 20 Fourier modes of the torus in each dimension. 

Figure 1 shows a plot of I1 on a long orbit of TI (lo7 turns). The orbit appears to be 
rather  chaotic, and shows a slow drift in I space. This “diffusion” is a typical phenomenon 
that accelerator builders strive to understand and control. 

6. Validation of the map 

An obvious test of validityof TI is to check its agreement with TO at many points ( I ,  4). For 
several hundred randomly chosen points we find a maximum deviation at one turn of about 
1 part in lo4. The agreement can be increased essentially at will by increasing the number 
of Fourier modes and spline interpolation points, but we think it more useful to see how 
well the physical phenomena of TO are reproduced at  this modest level of agreement. Since 
resonances form in some sense the “skeleton of phase space”, an immediate requirement 
i s  that resonant structures be reproduced down to some fine scale. Another test is t o  
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Figure 1. 
conditions: (Ii(O),h(O)) = (2.19,1.41) * lO-'m,4(O) = (0,O). 

11 (in meters) plotted at every 8th synchrotron period over 77000 periods (10' turns). Initial 

construct nearly invariant tori of TI, and then check their invariance. under TO. In Ref. 
[S] we report such tests, and take the results as evidence that TI and Ti represent closely 
similar physical systems. 

7. Long-term bounds on the motion 

A numerical method to set bounds on the motion for long but finite times was proposed in 
Ref. [5]. In the spirit of the Nekhoroshev theorem, one constructs globally defined quasi- 
invariants, and estimates their maximum change over NO turns for any initial condition 
in an open region 52. One can then set a bound on the maximum change during N >> NO 
turns for any initial condition in an open subset Ro c R. The techniques of Ref. [5] ,  
presented there for a simple model of betatron motion, can now be applied to the present 
realistic model of the LHC, thanks to our fast mapping. A brief account of initial work in 
this direction is to be found in Ref. [SI. 
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