Effects of vertical girder realignment in the Argonne APS storage ring.

PDF Version Also Available for Download.

Description

The effects of vertical girder misalignments on the vertical orbit of the Advanced Photon Source (APS) storage ring are studied. Partial sector-realignment is prioritized in terms of the closed-orbit distortions due to misalignments of the corresponding girders in the sectors. A virtual girder-displacement (VGD) method is developed that allows the effects of a girder realignment to be tested prior to physically moving the girder. The method can also be used to anticipate the corrector strengths needed to restore the beam orbit after a realignment. Simulation results are compared to experimental results and found to reproduce the latter quite closely. Predicted ... continued below

Physical Description

5 p.

Creation Information

Lessner, E. April 14, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The effects of vertical girder misalignments on the vertical orbit of the Advanced Photon Source (APS) storage ring are studied. Partial sector-realignment is prioritized in terms of the closed-orbit distortions due to misalignments of the corresponding girders in the sectors. A virtual girder-displacement (VGD) method is developed that allows the effects of a girder realignment to be tested prior to physically moving the girder. The method can also be used to anticipate the corrector strengths needed to restore the beam orbit after a realignment. Simulation results are compared to experimental results and found to reproduce the latter quite closely. Predicted corrector strengths are also found to be close to the actual local corrector strengths after a proof-of-principle two-sector realignment was performed.

Physical Description

5 p.

Notes

INIS; OSTI as DE00011133

Medium: P; Size: 5 pages

Source

  • 1999 Particle Accelerator Conference, New York, NY (US), 03/29/1999--04/02/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ASD/CP-97727
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 11133
  • Archival Resource Key: ark:/67531/metadc624577

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 14, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 11, 2017, 12:19 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Lessner, E. Effects of vertical girder realignment in the Argonne APS storage ring., article, April 14, 1999; Illinois. (digital.library.unt.edu/ark:/67531/metadc624577/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.