Two-color resonant four-wave mixing: A tool for double resonance spectroscopy

PDF Version Also Available for Download.

Description

Two-color resonant four-wave mixing (RFWM) shows great promise in a variety of double-resonance applications in molecular spectroscopy and chemical dynamics. One such application is stimulated emission pumping (SEP), which is a powerful method of characterizing ground-state potential energy surfaces in regions of chemical interest. The authors use time-independent, diagrammatic perturbation theory to identify the resonant terms in the third-order nonlinear susceptibility for each possible scheme by which two-color RFWM can be used for double-resonance spectroscopy. After a spherical tensor analysis they arrive at a signal expression for two-color RFWM that separates the molecular properties from purely laboratory-frame factors. In addition, ... continued below

Physical Description

15 p.

Creation Information

Rohlfing, E.A.; Tobiason, J.D.; Dunlop, J.R. & Williams, S. August 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Livermore, CA (United States)
    Place of Publication: Livermore, California

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Two-color resonant four-wave mixing (RFWM) shows great promise in a variety of double-resonance applications in molecular spectroscopy and chemical dynamics. One such application is stimulated emission pumping (SEP), which is a powerful method of characterizing ground-state potential energy surfaces in regions of chemical interest. The authors use time-independent, diagrammatic perturbation theory to identify the resonant terms in the third-order nonlinear susceptibility for each possible scheme by which two-color RFWM can be used for double-resonance spectroscopy. After a spherical tensor analysis they arrive at a signal expression for two-color RFWM that separates the molecular properties from purely laboratory-frame factors. In addition, the spectral response for tuning the DUMP laser in RFWM-SEP is found to be a simple Lorentzian in free-jet experiments. The authors demonstrate the utility of RFWM-SEP and test their theoretical predictions in experiments on jet-cooled transient molecules. In experiments on C{sub 3} they compare the two possible RFWM-SEP processes and show that one is particularly well-suited to the common situation in which the PUMP transition is strong but the DUMP transitions are weak. They obtain RFWM-SEP spectra of the formyl radical, HCO, that probe quasibound vibrational resonances lying above the low threshold for dissociation to H+CO. Varying the polarization of the input beams or PUMP rotational branch produces dramatic effects, in the relative intensities of rotational lines in the RFWM-SEP spectra of HCO; these effects are well-described by their theoretical analysis. Finally, RFWM-SEP spectra of HCO resonances that are homogeneously broadened by dissociation confirm the predicted lineshape and give widths that are in good agreement with those determined via unsaturated fluorescence depletion SEP.

Physical Description

15 p.

Notes

OSTI as DE95016389

Source

  • Laser techniques for state selected and state-to-state chemistry III, San Diego, CA (United States), 11-14 Jul 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE95016389
  • Report No.: SAND--95-8633C
  • Report No.: CONF-9507141--2
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/106509 | External Link
  • Office of Scientific & Technical Information Report Number: 106509
  • Archival Resource Key: ark:/67531/metadc624481

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 12, 2016, 8:22 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Rohlfing, E.A.; Tobiason, J.D.; Dunlop, J.R. & Williams, S. Two-color resonant four-wave mixing: A tool for double resonance spectroscopy, report, August 1, 1995; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc624481/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.