Mixing processes in high-level waste tanks. Progress report, September 15, 1996--September 14, 1997

PDF Version Also Available for Download.

Description

'U.C. Berkeley has made excellent progress in the last year in building and running experiments and performing analysis to study mixing processes that can affect the distribution of fuel and oxygen in the air space of DOE high-level waste tanks, and the potential to create flammable concentrations at isolated locations, achieving all of the milestones outlined in the proposal. The DOE support has allowed the acquisition of key experimental equipment, and has funded the full-time efforts of one doctoral student and one postdoctoral researcher working on the project. In addition, one masters student and one other doctoral student, funded by ... continued below

Physical Description

36 pages

Creation Information

Peterson, P. F. January 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

'U.C. Berkeley has made excellent progress in the last year in building and running experiments and performing analysis to study mixing processes that can affect the distribution of fuel and oxygen in the air space of DOE high-level waste tanks, and the potential to create flammable concentrations at isolated locations, achieving all of the milestones outlined in the proposal. The DOE support has allowed the acquisition of key experimental equipment, and has funded the full-time efforts of one doctoral student and one postdoctoral researcher working on the project. In addition, one masters student and one other doctoral student, funded by external sources, have also contributed to the research effort. Flammable gases can be generated in DOE high-level waste tanks, including radiolytic hydrogen, and during cesium precipitation from salt solutions, benzene. Under normal operating conditions the potential for deflagration or detonation from these gases is precluded by purging and ventilation systems, which remove the flammable gases and maintain a well-mixed condition in the tanks. Upon failure of the ventilation system, due to seismic or other events, however, it has proven more difficult to make strong arguments for well-mixed conditions, due to the potential for density-induced stratification which can potentially sequester fuel or oxidizer at concentrations significantly higher than average. This has complicated the task of defining the safety basis for tank operation. The author is currently developing numerical tools for modeling the transient evolution of fuel and oxygen concentrations in waste tanks following loss of ventilation. When used with reasonable grid resolutions, standard multi-dimensional fluid dynamics codes suffer from excessive numerical diffusion effects, which strongly over predict mixing and provide nonconservative estimates, particularly after stratification occurs. The National Institute of Standards and Technology (NIST) has developed useful codes for predicting stratification and mixing due to fires in enclosures, but these codes are not supported by appropriate experiments for waste tanks, and do not consider mixing induced by injected jets, or the detailed distribution of fuel and oxygen concentration. The UCB Thermal Hydraulics Group model BMIX (Berkeley Mechanistic Mixing Model) is being developed to mechanistically predict mixing processes in large waste-tank volumes, where mixing processes can be driven by hot and cold vertical and horizontal surfaces and injected buoyant jets. The author is supporting the model with scaled experiments using water/salt solutions, as well as separate experiments using air with simulant fuels (helium and refrigerant-22 for hydrogen and benzene) to study the specific mixing processes which occur in waste tanks, and will also support the implementation of the code for use in waste tank operations. This year''s experimental efforts have focused on scaled water systems to study the exchange flows which occur through tank ceiling openings following loss of ventilation, as well the mixing processes that occur below the ceiling. These water experiments are providing data and insight for the modeling effort while construction of the larger air/benzene simulant experiment is underway.'

Physical Description

36 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE00013485
  • Report No.: EMSP-54656--97
  • Grant Number: FG07-96ER14731
  • DOI: 10.2172/13485 | External Link
  • Office of Scientific & Technical Information Report Number: 13485
  • Archival Resource Key: ark:/67531/metadc624417

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 1997

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Jan. 19, 2018, 1:23 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 8

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Peterson, P. F. Mixing processes in high-level waste tanks. Progress report, September 15, 1996--September 14, 1997, report, January 1, 1997; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc624417/: accessed October 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.