MOLYBDENUM ISOTOPIC COMPOSITION OF SINGLE SILICON CARBIDES FROM SUPERNOVAE*

M. J. Pellin1, A. M. Davis2,3, R. S. Lewis2, S. Amari5, and R. N. Clayton2,3,4

1Materials Science and Chemistry Divisions, Argonne National Laboratory, Argonne, IL 60439
2Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637
3Department of Chemistry, The University of Chicago, Chicago, IL 60637
4Department of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637
5McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130

submitted for presentation at the
30th Lunar and Planetary Science Conference
Houston, Texas
March 15-19, 1999

and for publication in

Lunar and Planetary Science XXX

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
MOLYBDENUM ISOTOPIC COMPOSITION OF SINGLE SILICON CARBIDES FROM SUPERNOVAE.
M. J. Pellin1, A. M. Davis2,3, R. S. Lewis3, S. Amari4 and R. N. Clayton2,3,4, 1Materials Science and Chemistry Divisions, Argonne National Laboratory, Argonne, IL 60439, 2Enrico Fermi Institute, 3Department of the Geophysical Sciences, 4Department of Chemistry, University of Chicago, Chicago, IL 60637, 5McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130 (pellin@anl.gov; a-davis@uchicago.edu; royl@rainbow.uchicago.edu; sa@howdy.wustl.edu; r-clayton@uchicago.edu)

Introduction: Presolar silicon carbide grains form in a variety of types of stars, including asymptotic giant branch red giant stars and supernovae. The dominant mechanisms of heavy element nucleosynthesis, the s-process and r-process, are thought to occur in AGB stars and supernovae, respectively [1]. We have previously reported that mainstream SiC grains have strong enrichments in the s-process isotopes of Sr, Zr and Mo [2-5]. We report here the first measurements of Mo isotopes in X-type SiC grains, which have previously been identified as having formed from supernova ejecta.

Experimental methods: Approximately 2000 grains of Murchison SiC grain size separate KJG [6] were dispersed onto a soft gold mount. A search for X-grains was made by ion imaging [7] with the Washington University ion microprobe. 11 X-grains were identified, along with 3 B-grains, one Z grain and a unique 29Si, 30Si-rich grain. These grains were analyzed for Si, C and N isotopic compositions, along with 56 of the mainstream grains. The mount was then carefully characterized by electron imaging and x-ray mapping with a scanning electron microscope at the University of Chicago, identifying all grains on the mount. High resolution images were made of all grains that had been analyzed by ion microprobe. The isotopic compositions of Mo in a number of grains were measured by laser ablation laser resonant ionization mass spectrometry using the CHARISMA instrument at Argonne National Laboratory. The analytical methods were similar to those used previously [3].

Results: We report here the isotopic compositions of two X-grains and compare them with several mainstream grains measured in the same mount. Mass spectra of a terrestrial standard, an X-grain and a mainstream grain are compared in Fig. 1. It is immediately apparent that all three patterns are quite different. The mainstream grain is most enriched in 99Mo and 100Mo, whereas the X-grain is most enriched in 96Mo and 98Mo. Following our previous practice, we have normalized the data to 96Mo and to the terrestrial standard and calculated delta values. Two X-grains are compared with 4 mainstream grains in Fig. 2. The two kinds of SiC have very different patterns. Mainstream grains are strongly depleted in p-process 99Mo and 97Mo and r-process 100Mo, somewhat depleted in mixed r- and s-process 95Mo, 97Mo and 98Mo. In contrast, the X-grains have large positive δ95Mo and δ97Mo values.

Discussion: Among the huge range of isotopic compositions of presolar SiC, X-grains have been distinguished by their high 12C/13C, low 14N/15N and low 29Si and 30Si values. These isotopic compositions strongly suggest nucleosynthesis in supernovae [8] and the discovery of excess 48Ca from the in situ decay of 44Ti (T1/2=48y) [9,10] confirmed this idea. The question of whether X-grains come from Type Ia [11] or Type II [12] supernovae is unresolved. The r-process most likely occurs in Type II supernovae, although the details remain unclear. The presence of r-process enrichments in X-grains would argue strongly that these grains formed in Type II supernovae.

Molybdenum has seven stable isotopes: 97Mo and 94Mo are pure p-process isotopes; 96Mo is a pure s-process isotope, shielded from the r-process by 96Zr; 100Mo is a pure r-process isotope; and 95Mo, 97Mo and 98Mo can be produced by both the r- and s-processes. We had expected that if X-grains were enhanced in r-process Mo, the largest excesses would be in the pure
r-process isotope, 100Mo. This is clearly not the case in the two X-grains analyzed so far. The largest enrichments (compared to solar system Mo) are in 95Mo and 97Mo and there are smaller enrichments in 99Mo and 100Mo. All of these isotopes can be produced by the r-process. Thus, the X-grains do appear to have an r-process signature and thus they likely came from Type II supernovae. The Mo isotopic signature in the X-grains is quite different from one as the one responsible for the solar system r-process isotopes. This is easily noted by the observation that the mainstream grains, which have an s-process signature, are not complementary to the X-grain patterns. r-Process nucleosynthesis calculations are very sensitive to the parameters chosen. The r-process responsible for the X-grains is an unusual one, as it produced significantly more 95Mo than 100Mo. One possibility is that the source experienced sort of a weak r-process with only a small neutron burst that acted on seeds in the Se-Br-Kr-Rb-Sr region and only neutron-captured out to mass 95 to 98 rather than to mass 100 and beyond. Detailed calculations will be necessary to test this possibility.

Acknowledgements: This work was supported by the Department of Energy, BES-Materials Sciences through Contract No. W-31-109-ENG-38 and by NASA grants NAG5-3986, NAG5-4297 and NAG5-4298. We are grateful to J. W. Truran for fruitful discussions on nucleosynthesis and to Y. Kashiv for assistance with the measurements.