The development of Sn-Li coolant/breeding material for APEX/ALPS applications.

PDF Version Also Available for Download.

Description

A Sn-Li alloy has been identified to be a coolant/breeding material for D-T fusion applications. The key feature of this material is its very low vapor pressure, which will be very useful for free surface concepts employed in APEX, ALPS and inertial confinement fission. The vapor is dominated by lithium, which has very low Z. Initial assessment of the material indicates acceptable tritium breeding capability, high thermal conductivity, expected low tritium volubility, and expected low chemical reactivities with water and air. Some key concerns are the high activation and material compatibility issues. The initial assessment of this material, for fission ... continued below

Physical Description

15 p.

Creation Information

Sze, D.-K. July 8, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 28 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A Sn-Li alloy has been identified to be a coolant/breeding material for D-T fusion applications. The key feature of this material is its very low vapor pressure, which will be very useful for free surface concepts employed in APEX, ALPS and inertial confinement fission. The vapor is dominated by lithium, which has very low Z. Initial assessment of the material indicates acceptable tritium breeding capability, high thermal conductivity, expected low tritium volubility, and expected low chemical reactivities with water and air. Some key concerns are the high activation and material compatibility issues. The initial assessment of this material, for fission applications, is presented in this paper.

Physical Description

15 p.

Notes

INIS; OSTI as DE00012429

Medium: P; Size: 15 pages

Source

  • 5th International Symposium on Fusion Nuclear Technology, Rome (IT), 09/19/1999--09/24/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/TD/CP-98298
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 12429
  • Archival Resource Key: ark:/67531/metadc624391

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 8, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 7, 2017, 2:58 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 28

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Sze, D.-K. The development of Sn-Li coolant/breeding material for APEX/ALPS applications., article, July 8, 1999; Illinois. (digital.library.unt.edu/ark:/67531/metadc624391/: accessed April 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.