Experimental Design to Study RF Pulsed Heating

PDF Version Also Available for Download.

Description

An experiment to study the effects of RF pulsed heating on copper has been developed at SLAC. The experiment consists of two circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz. These cavities are connected by a magic tee and driven by a 50 MW X-band klystron. Each cavity receives an input pulse of 20 MW with a pulse length of 1.5 {micro}s. This input corresponds to a maximum temperature rise of 350 K on the copper surface. The details of the experimental setup will be described.

Physical Description

4 pages

Creation Information

Pritzkau, David P. April 9, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

An experiment to study the effects of RF pulsed heating on copper has been developed at SLAC. The experiment consists of two circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz. These cavities are connected by a magic tee and driven by a 50 MW X-band klystron. Each cavity receives an input pulse of 20 MW with a pulse length of 1.5 {micro}s. This input corresponds to a maximum temperature rise of 350 K on the copper surface. The details of the experimental setup will be described.

Physical Description

4 pages

Source

  • Other Information: PBD: 9 Apr 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SLAC-PUB-8070
  • Grant Number: AC03-76SF00515
  • DOI: 10.2172/10015 | External Link
  • Office of Scientific & Technical Information Report Number: 10015
  • Archival Resource Key: ark:/67531/metadc624381

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 9, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Feb. 2, 2016, 5:29 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Pritzkau, David P. Experimental Design to Study RF Pulsed Heating, report, April 9, 1999; Menlo Park, California. (digital.library.unt.edu/ark:/67531/metadc624381/: accessed June 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.