Study on severe accident fuel dispersion behavior in the Advanced Neutron Source reactor at Oak Ridge National Laboratory

PDF Version Also Available for Download.

Description

Core flow blockage events have been identified as a leading contributor to core damage initiation risk in the Advanced Neutron Source (ANS) reactor. During such an accident, insufficient cooling of the fuel in a few adjacent blocked coolant channels out of several hundred channels, could also result in core heatup and melting under full coolant flow condition in other coolant channels. Coolant inertia forces acting on the melt surface would likely break up the melt into small particles. Under thermal-hydraulic conditions of ANS coolant channel, micro-fine melt particles are expected. Heat transfer between melt particle and coolant, which affects the ... continued below

Physical Description

18 p.

Creation Information

Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S. & Georgevich, V. September 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Core flow blockage events have been identified as a leading contributor to core damage initiation risk in the Advanced Neutron Source (ANS) reactor. During such an accident, insufficient cooling of the fuel in a few adjacent blocked coolant channels out of several hundred channels, could also result in core heatup and melting under full coolant flow condition in other coolant channels. Coolant inertia forces acting on the melt surface would likely break up the melt into small particles. Under thermal-hydraulic conditions of ANS coolant channel, micro-fine melt particles are expected. Heat transfer between melt particle and coolant, which affects the particle breakup characteristics, was studied. The study indicates that the thermal effect on melt fragmentation seems to be negligible because the time corresponding to the breakup due to hydrodynamic forces is much shorter than the time for the melt surface to solidify. The study included modeling and analyses to predict transient behavior and transport of debris particles throughout the coolant system. The transient model accounts for the surface forces acting on the particle that result from the pressure variation on the surface, inertia, virtual mass, viscous force due to the relative motion of the particle in the coolant, gravitation, and resistance due to inhomogeneous coolant velocity radially across piping due to expected turbulent coolant motions. The results indicate that debris particles would reside longest in the heat exchangers because of lower coolant velocity there. Also they are entrained and move together in a cloud.

Physical Description

18 p.

Notes

INIS; OSTI as DE96003187

Source

  • Other Information: PBD: Sep 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96003187
  • Report No.: ORNL/TM--12946
  • Grant Number: AC05-84OR21400
  • DOI: 10.2172/161553 | External Link
  • Office of Scientific & Technical Information Report Number: 161553
  • Archival Resource Key: ark:/67531/metadc624158

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Feb. 1, 2016, 1:55 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 10

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S. & Georgevich, V. Study on severe accident fuel dispersion behavior in the Advanced Neutron Source reactor at Oak Ridge National Laboratory, report, September 1, 1995; Tennessee. (digital.library.unt.edu/ark:/67531/metadc624158/: accessed October 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.