Second Generation Advanced Reburning for High Efficiency N0x Control

PDF Version Also Available for Download.

Description

Energy and Environmental Research Corporation is developing a family of high efficiency and low cost NO{sub x} control technologies for coal fired utility boilers based on Advanced Reburning (AR), a synergistic integration of basic reburning with injection of an N-agent. In conventional AR, injection of the reburn fuel is followed by simultaneous N-agent and overfire air injection. The second generation AR systems incorporate several components which can be used in different combinations. These components include: (1) Reburning Injection of the reburn fuel and overfire air. (2) N-agent Injection The N-agent (ammonia or urea) can be injected at different locations: into ... continued below

Physical Description

24 pages

Creation Information

Zamansky, Vladimir M.; Maly, Peter, M.; Sheldon, Mark; Seeker, W. Randall & Folsom, Blair A. December 31, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Energy and Environmental Research Corporation is developing a family of high efficiency and low cost NO{sub x} control technologies for coal fired utility boilers based on Advanced Reburning (AR), a synergistic integration of basic reburning with injection of an N-agent. In conventional AR, injection of the reburn fuel is followed by simultaneous N-agent and overfire air injection. The second generation AR systems incorporate several components which can be used in different combinations. These components include: (1) Reburning Injection of the reburn fuel and overfire air. (2) N-agent Injection The N-agent (ammonia or urea) can be injected at different locations: into the reburning zone, along with the overfire air, and downstream of the overfire air injection. (3) N-agent Promotion Several sodium compounds can considerably enhance the NO{sub x} control from N-agent injection. These ''promoters'' can be added to aqueous N-agents. (4) Two Stages of N-agent Injection and Promotion Two N-agents with or without promoters can be injected at different locations for deeper NO{sub x} control. AR systems are intended for post-RACT applications in ozone non-attainment areas where NO{sub x} control in excess of 80% is required. AR will provide flexible installations that allow NO{sub x} levels to be lowered when regulations become more stringent. The total cost of NO{sub x} control for AR systems is approximately half of that for SCR. Experimental and kinetic modeling results for development of these novel AR systems are presented. Tests have been conducted in a 1.0 MMBtu/hr Boiler Simulator Facility with coal as the main fuel and natural gas as the reburning fuel. The results show that high efficiency NO{sub x} control, in the range 84-95%, can be achieved with various elements of AR. A comparative byproduct emission study was performed to compare the emissions from different variants of AR with commercial technologies (reburning and SNCR). For each technology sampling included: CO, SO{sub 2}, N{sub 2}O, total hydrocarbons, NH{sub 3}, HCN, SO{sub 3}, fly ash mass loading and size distribution, PM10, and carbon in ash. AR technologies do not generate significant byproduct emissions in comparison with basic reburning and SNCR processes under similar conditions. In most cases, byproduct emissions were found to be lower for the AR technologies. Kinetic modeling predictions qualitatively explain the experimental trends observed in the combustion tests. The detailed reaction mechanism can describe the interaction of NO and ammonia in the reburning and overfire air zones, the effect of mixing times, and the sodium promotion effect.

Physical Description

24 pages

Notes

INIS; OSTI as DE00016497

Source

  • Advanced Coal-Based Power and Environmental Systems '97 Conference, Pittsburgh, PA (US), 07/22/1997--07/24/1997; Other Information: Supercedes report DE98051621

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98051621
  • Report No.: DOE/PC/95251-98/C0924
  • Report No.: CONF-970772--
  • Grant Number: AC22-95PC95251
  • Office of Scientific & Technical Information Report Number: 16497
  • Archival Resource Key: ark:/67531/metadc624115

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1997

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Nov. 17, 2015, 6:40 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Zamansky, Vladimir M.; Maly, Peter, M.; Sheldon, Mark; Seeker, W. Randall & Folsom, Blair A. Second Generation Advanced Reburning for High Efficiency N0x Control, article, December 31, 1997; United States. (digital.library.unt.edu/ark:/67531/metadc624115/: accessed August 14, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.