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Introduction 

The DSI3D-RCS code is designed to numerically evaluate radar cross sections on 
complex objects by solving Maxwell's curl equations in the time-domain and in three 
space dimensions. The code has been designed to run on the new parallel processing 
computers as well as on conventional serial computers. 

The DSI3D-RCS code is unique for the following reasons: 
Allows the use of unstructured non-orthogonal grids, 
Allows a variety of cell or element types, 
Reduces to be the Finite Difference Time Domain (FDTD) method when 
orthogonal grids are used, 
Preserves charge or divergence locally (and globally), 
Is conditionally stable, 
Is non-dissipative, 
Is accurate for non-orthogonal grids. 

This method is derived using a Discrete Surface Integration @SI) technique[ 11. As 
fomulated, the DSI technique can be used with essentially arbitrary unstructured grids 
composed of convex polyhedral cells. This implementation of the DSI algorithm allows 
the use of unstructured grids that are composed of combinations of non-orthogonal 
hexahedrons, tetrahedrons, triangular prisms and pyramids. This algorithm reduces to the 
conventional FDTD method when applied on a structured orthogonal hexahedral grid. 
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Overview 

Discrete Surface Integration Method 
We begin by assuming that we wish to solve Maxwell’s curl equations on an hgu la r  
three-dimensional domain R that has a boundary surface denoted by S. We will also 
assume that the domain R has been discretized into convex polyhedrons. The figure 
below shows a twisted waveguide discretized using hexahedral cells. 

Twisted waveguide discretized using distorted hexahedral cells. 

This is an example of a problem type that we wish to consider that could not be easily 
solved using the conventional orthogonal grid FDTD method. Maxwell’s curl equations 
are given by: 

aD - = V X H  
dt 

dB ---=-VxE 
at 

where for linear isotropic materials the vectors D, E, B and H are related by the 
constitutive relationships 

D=EE 
B = p H  

The linear isotropic material properties are: E, the permittivity, and p, the permeability. 
Like the conventional FDTD method, the DSI methods can be generalized to treat more 
complex materials. However, for the purposes of this discussion, we will assume that the 
linear isotropic material properties are piecewise constant over the domain R. We will 
also assume that S is a perfectly conducting surface, i.e., Em = 0. This is sufficient to 
guarantee that the problem is well-posed. 
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We will derive our new DSI algorithm for unstructured grids formed from convex 
polyhedral cells. We restrict the choice of cell types to convex polyhedrons whose edges 
are straight lines. The faces of the polyhedrons are not necessarily planar and we make 
the assumption that any face in the assembled grid is shared by at most two cells. These 
are very weak restrictions and allow a great deal of flexibility. 

The DSI method requires the use of a dual grid. The dual grid and its structure are 
completely derivable from a knowledge of the primary grid. For each cell of the primary 
grid, we define its barycenter to be a node of the dual grid. The barycenter of a cell is 
located at the average of the coordinates of the nodes which define the cell. We construct 
edges of the dual grid by connecting barycenters of adjacent cells with straight lines 
passing through each of the interior cell faces of the primary grid. The barycenters of two 
cells will be connected (i.e., form a dual edge) if and only if the two cells share a 
common face. For primary cell faces which lie on the problem boundary, S, we form a 
corresponding half dual edge by joining the cell barycenter to a point on the face by 
moving from the cell barycenter in the direction of the face area normal vector. There is a 
one-to-one correspondence between the nodes, edges, faces, anacells of the primary grid 
to the cells, faces, edges and nixies of the dual grid, respectively. The dual face associated 
with a primary edge has as its perimeter the dual edges associated with all of the primary 
faces which share the given primary edge. The dual cell associated with a primary node 
has as its surface the dual faces which correspond to all of the primary edges which share 
the primary node. Though not necessary for the definition of the new algorithm, we 
recommend that the variations in grid sizes and angles be sufficiently smooth so that the 
primary and dual edges actually intersect their corresponding dual and primary faces, 
respectively. Degradation of solution accuracy has been observed when this condition is 
not met. The following figure shows an eight cell hexahedral primary grid and its one 
interior dual cell. 
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/ 
Primary grid consisting of eight hexahedral cells and its one interior dual cell. 

Our DSI solution variables will be associated with the edges and faces of the primary grid 
and also with the edges and faces of the dual grid. The quantity associated with a primary 
cell edge is the projection of the electric field vector onto that edge, i.e., E s, where s is 
the primary cell edge vector. The magnetic field projection H - S* is associated with a dual 
cell edge where S* is the dual cell edge vector. In addition, with each primary grid face 
we will associate a full magnetic field vector B, and with each dual grid face we will 
associate a full electric displacement vector D. We will denote with an asterisk, *, 
geometric quantities associated with the dual grid. The following figure depicts these 
associations. 
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0 Has* and B Locations 
Ems andD Locations 

Discrete electric and magnetic field variable locations relative to the primary and 
dual grid cells. 

We remark that these associations of field quantities with the primary and dual grid 
locations are entirely reciprocal and that the respective locations of the magnetic and 
electric field quantities could be interchanged. The particular choice of which field 
quantities to associate with each grid is best determined by deciding which field 
quantities one desires to have on the exterior boundary surfaces where the boundary 
conditions will be imposed. Since we are assuming that our domain R is surrounded by a 
perfect electric conductor, we will associate the electric and magnetic field quantities as 
described above. For open region problems, the choice for the location of the field 
quantities will depend on'the particular radiation boundary condition algorithm used. 

We will now describe the equations and algorithmic process used to advance in time the 
magnetic field vectors which are associated with each primary grid face. We assume that 
the time variable has been discretized by the choice of a time step size, AI . Superscripts 
on field quantities will &note their time state with Dk = D(f") = D ( m )  . As we will be 
using a leapfrog style time integration method, the magnetic field vectors will be 
associated with half-integer times, tk*, and the electric field vectors will be associated 
with integer times, t k .  For a particular primary cell face, we define the area-normal vector 
to be N = In ds, where n is a unit surface normal defined by the right-hand rule in 
relation to a specified circulation around the perimeter of the cell face. It is easily shown 
that N is uniquely determined by the perimeter of the surface and is independent of the 
actual interior surface shape. This fact allows for simple computations of N using 
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piecewise planar approximating surfaces. Using (2) for the primary grid face, F, we 
define the time derivative of the normal component of the magnetic field to be: 

Equation (3) allows us to obtain the time derivative of the normal component of the 
magnetic field on a primary face, F,  from the electric field projections onto the perimeter 
edges of that face. The last integral in (3) is easily computed numerically by summing 
these edge projections. This can be done for each primary cell face. 

The next step in the algorithm is to use these time derivatives of the normal components 
of the magnetic field to compute a full vector value of dB:/dt for the primary cell face, 
F. We will assume that the face F is defined by P primary edges and nodes, with the ith 
node being located at the intersection of the consecutive edges i and rn = (imodP) + 1. 
Also, we assume that the face F is shared by N, primary grid cells, where by 
construction: Ne = 1 for boundary faces and Ne = 2 for interior faces. We will denote by 
FiJ, the face of cellj (other than F) which shares edge i. The following figure depicts 
these associations for a dual edge associated with a primary face defmed by five primary 
edges. 
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I 
N 

4- 

F4,2 
N 

Cell 1 

Cell 2 

The primary grid faces used to time advance a magnetic field vector. 

At each of the P nodes of face F, we will unfold N,vector values 
3 x 3 system of equations: 

by solving the 
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where i = 1 ,..., P, j = 1 ,..., N,, and m = (imodP) + 1. For this primary face, F, which is 
shared by N, primary cells, there are PN, different values of dBi/dt,  which will now 
be averaged or interpolated to form a single dBi/dt vector for the face. The particular 
averaging or interpolation we use is given by: 

where the weight 

represents the volume of the jth local coordinate system at node i of face F. We note also 
that the weight wij is the determinant of the system of equations (4). We also comment 
that equation (5 )  has been derived assuming the vector orientations shown in the 
preceding figure. For other orientations, appropriate modifications of the signs of the 
various terms must be properly accounted for. 

The full B vector for each primary face, F ,  may now be advanced in time using the time- 
centered leapfrog algorithm: 

where At is the specified time step size. Finally, a time advanced value of the projection 
of the magnetic field onto the dual edge, s', which penetrates the primary cell face, F,  is 
easily obtained using: 

where p is an appropriate permeability value. If the permeability is discontinuous then a 
value can be determined by an appropriate average as is done for FDTD algorithms. 

It is important to note that the first equation in (4) (namely, the equation coming from the 
given face F) is common to all of the sets of 3 x 3 equations being used in the time 
advance process for the face. This implies that the averaged value (5) of the time 
derivative of the magnetic field vector for F also satisfies this equation. It is from this 
aspect of the numerical algorithm that divergence or charge conservation can be 
demonstrated. If we integrate the divergence of (6) over a primary cell, C, we obtain 
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Considering the last integral term in (8) we have 

where the sum runs over all the faces Fi of the closed cell C. The last sum is zero because 
each edge of C will be traversed twice, once in each direction. Thus we see that the local 
divergence of the time derivative of the magnetic field vector is zero and so if the initial 
fields have zero local divergence, then (8) and (9) prove that zero divergence of the time 
advanced fields will be conserved. 

To time advance the electric field vectors which are associated with each dual cell face, 
we proceed in a manner which is exactly "dual" to the magnetic field procedure described 
above. For any dual cell face, we define the dual area-normal vector to be N' = /n'dS', 
where n' is a unit dual surface normal defined by the right-hand rule in relation to a 
specified circulation around the perimeter of the dual cell face. Using (1) for a given dual 
grid face F' , we define the time derivative of the normal component of the electric 
displacement vector to be: 

Again, the last integral in (10) is easily computed by summing the projections of the 
magnetic field on the edges defining the dual cell face. This can be done for each dual 
cell face. 

The next step in the algorithm is to use these time derivatives of the normal components 
of the electric field to compute a full vector value of dD:. /dt for the dual cell face, F' . 
We will assume that the face F' is defined by P' dual edges and nodes, with the ith dual 
node being located at the intersection of dual edges i and m = (imodP') + 1. Also, we 
assume that the dual face F' is shared by N,' dual cells. We will denote by the dual 
face of dual cellj (other than F') which shares dual edge i .  The above figure with all 
quantities replaced by their appropriate duals would depict these associations. At each of 
the P' dual nodes of dual face F', we will unfold NT vector values dDi4/dt by solving 
the 3 x 3 system of equations: 
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where i = l,...,P' , j = l , . . . ,N~ and m = (imodP') + 1. For this dual face, F', which is 

shared by Ni dual cells, there are P'N,' different values of d'Di+/df, which will now be 
averaged or interpolated to form a single dDi?/dt vector for the dual face. The 
averaging methods (5) used for the magnetic fields are also used for the electric fields. 

The full D vector for the dual face, F' , may now be advanced in time using the time- 
centered leapfrog algorithm: 

where At is the specified time step size. Finally, a time advanced value of the projection 
of the electric field onto the primary edge, s, which penetrates the dual cell face, F' , is 
easily obtained using: 

where E is an appropriate permittivity value. The local conservation of divergence for the 
electric field can be easily shown in a manner similar to that described above for the 
magnetic fields. 

Equations (3)-(7) for the magnetic field quantities, equations (10)-(13) for the electric 
field quantities and a linear averaging or interpolation method (5), constitute the new 
divergence conserving DSI approximation methods. 

We note that significant simplifications occur when a primary edge is orthogonal to its 
dual face, or "dually", when a dual edge is orthogonal to its primary face. When this 
occurs, the vectors s and Ni* (or s' and NF) are aligned. The time advance of the edge 
projected field value may be performed directly using (3) (or (10)) and the averaging (5) 
may be completely bypassed. Stated another way, when the above orthogonality 
.conditions exist, the time advance of E - s (or H - s') may be accomplished using a single 
line integral around the perimeter of the face F' (or F). It is this fact that demonstrates 
that the DSI methods are completely equivalent to the canonical FDTD methods when 
orthogonal hexahedral based grids are used. Therefore, the DSI methods are direct 
generalizations of the orthogonal grid FDTD methods for unstructured nonorthogonal 
grids. These orthogonality conditions may occur locally for only a relatively few edges or 
may occur globally for the entire grid. They occur globally when structured grids 
composed of orthogonal hexahedral cells axe used. They also occur globally when grids 
are used which axe three dimensional analogs of two-dimensional grids formed from 
Delaunay triangles and their dual Voronoi polygons. 



Boundary Conditions 

- Perfect Electric conductor (PEC) boundary conditions are some of the most commonly 
used boundary conditions in computing RCS values for metallic objects. PEC conditions 
require that the total tangential electric field be set to zero on the PEC surface. This is 
easily accomplished because the tangential electric field components, E s , live on the 
boundary and we simply set E - s = E ,  = 0 for the total field. If the grid is composed of 
orthogonal hexahedral cells, this is all that is required. For nonorthogonal grids, another 
subtlety arises in updating primary cell edge values for edges which have an endpoint on 
the problem boundary surface and the other endpoint in the problem interior. As has 
been depicted earlier, the update of these edges requires the use of the two dual cells 
which surround the endpoints of the edge. The dual cell which surrounds the interior 
endpoint of the edge is a typical dual cell and is treated in the usual manner. However, 
the dual cell associated with the edge endpoint which lies on the problem boundary is 
special in that most of its dual faces are half the normal size as they are clipped by the 
boundary. For these "clipped" dual faces (which are associated with boundary primary 
edges) special care must be taken to guarantee that the values of the path integrals around 
these faces are compatible with the PEC boundary condition. Two items need to be 
considered for compatibility. First, the dual face area normal vector for the "clipped" 
dual face must be tangent to the boundary surface. This is readily accomplished by 
carefully considering what the full "unclipped" dual face would be if the problem space 
were extended beyond the actual boundary. Second, the path integral of the total 
magnetic field around the dual face must be zero as it is equal to the time derivative of the 
total tangential electric field which is zero from the definition of the PEC. In the 
scattered field formulation, this means that the path integral of the scattered magnetic 
field must be set proportional to the time derivative of the incident tangential electric 
field at the boundary in the direction of the dual face area normal vector. 

- Perfect Magnetic Conductor (PMC) symmetry plane boundary conditions are another 
useful boundary condition for certain types of problems. They frequently allow a 
problem to be solved using a grid that is half as big as the full grid for the problem. 
These conditions require that the total tangential magnetic field be set to zero on the 
specified surface. We desire that these conditions be applied on the surface of the 
primary grid which is usually where tangential electric field information is specified. We 
accomplish this by using reflection principles and images which are inherent with this 
type of planar boundary. Specifically, the tangential magnetic fields and normal electric 
fields have odd symmetry across the plane, and the normal magnetic fields and tangential 
electric fields are of even symmetry across the plane. Using these symmetries, 
appropriate values of the full path integrals can be computed using only the half path 
integrals which are in the computational domain. With these appropriate path integrals, 
values for the tangential electric field value which lie in the symmetry plane can be 
updated on a time step by time step basis. 
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Radiation Boundary conditions (RBC) are an absolute necessity for computing RCS 
values in open region problems. These conditions allow one to truncate the grid at a 
reasonable distance from the scatterer and thus avoid having to discretize extremely large 
volumes of space. These conditions are designed to allow scattered EM wave to leave the 
computational region without significant reflections. Achieving good RBC conditions is 
usually a very nontrivial process and much research has been performed looking for 
better and better RBC algorithms. No definitively "best" RBC algorithm has been 
identified - even for orthogonal grid FDTD algorithms. The situation for unstructured 
nonorthogonal grid codes is much more difficult and the state of RBC algorithms for 
these codes is still quite primitive. We have tested the standard Mur[q conditions and 
Liao[S] conditions for the situation where we terminate the exterior of the computational 
grid with several layers of structured and orthogonal hexahedral cells. These conditions 
work reasonably well but can impose considerable mesh generation difficulties in that it 
can be quite nontrivial to effect the transition fiom a boundary conforming unstructured 
and nonorthogonal grid to the structured and orthogonal portion of the grid where the 
RBC is applied. We have successfully implemented unstructured grid versions of several 
first order RBCs such as Mur, Liao, and Higdon[4-61. Each of these has been 

' parameterized so that it will minimize the backward reflection at a user-specified angle of 
incidence. We have had difficulty adapting the second and higher order conditions to the 
unstructured grid regime. Attempts thus far have resulted in instabilities. 
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The Farfield Transform for RCS 

Far field potentials are well known in the frequency domain; we use the time domain 
forms obtained by Kunz and Luebbers [2] 

where fi  is the normal vector on S, the integration surface completely enclosing the 
scatterer, r' is the point on the integration surface where the integrand is evaluated, and 

?R is the position of the far field evalution point. 
- 

1 From the potentials, U and W, the fields can be found accurate to - as 
R - - 

These far fields can be computed by accumulating time histories of U and W at each far 

field point, or by saving the time histories of E and H at all edges on the integration 

surface. In order to save in data transfer requirements in the parallel implementation, and 
in intermediate file storage, we chose the former solution. 

- - 
- c. 
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Because a long time history of these vector potentials is required for wide-band RCS 
results, a buffering mechanism has been developed to keep storage requirements to a 
minimum. 

A post-processor reads the vector potentials from binary files and computes the RCS. 

The integration surface is chosen to be a set of faces on the primary grid that form a 
closed surface that completely encloses the scatter. For each face, A = i^zda is 
approximated by the area normals that are available in DSI3D. Also needed in the 
calculation are H and E .  H is available at the centroid of each face because there is a 

dual edge associated with each face in the primary grid. E is found at the midpoints of 
the edges of each face; these values need to be interpolated to the centroid of the face. 

M 

CI N M  

LI 

Because these field values on the near field integration surface are different from those 
obtained by the standard DSI solver (vectors instead of scalars), another set of solver 
coefficients must be generated on each edge that contributes vector field values to the 
integration over faces on the far field integration surface. 

Because the retarded time of the fields on the integration surface is not an integral 

multiple of the problem time step (At), the time derivative of the integrand on a face of 

the integration surface must be linearly interpolated. For the U equation at the mrh time 

step and the j th  face, this leads to: 
M 

u = u +  ai E m x A  
-1  -1 47rRc(At)-j - j  

1 - 2 a j  u =u + E m x A  
-2+1 -1+1 4 d c ( A t ) - j  - j  

aj -1  u =u + E m x  A 
-2+2 -1+2 47rRc(At)-j - j  
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Due to the leapfrog time integration strategy for Maxwell’s equations, H lags E by half 

of a time step. For the W equation at the mrh time step and the j rh  face, this leads to: 
c. c1 

c. 

w = w +  Pi A xHm-1/2 
- k  - k  4ldic(At)-j - j  

The final step before computing the radar cross section (RCS) is to Fourier transform the 
incident pulse and the far field. Then, we can compute the RCS as 

where g is the polarization of the transmitting radar antenna, ,Q is the polarization of the 
receiving radar unit, and gm is the E field of the incident Gaussian pulse. 

Note that 

15 DSI3D Theory Manual 



By convention, q=O is along the + z axis, and u=O is on the + x axis. 
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Parallel Processing and Problem 
Partitioning 

To efficiently use multiple processors on a parallel computer to solve any one problem, it 
is required to split or partition the problem among the available processors. With the 
problem partitioned, each processor can produce the solution for its part of the problem. 
In order for this process to be efficient, there are to fundamental goals any partitioning 
process. 

Each processor should have an equal workload. 

The amount of inter-processor communication required should be minimized. 

For DSI3D, this partitioning ultimately divides up the primary and dual edge variables 
E s and H - s*. For some structured grids it is intuitively obvious how to partition the 
problem so that the above stated goals are achieved. For unstructured grids and 
particularly for tetrahedral based grids adequate partitioning schemes are very non- 
intuitive and difficult to construct. Fortunately, recent work by H. Simon[3] has 
produced some automatic approaches for solving this problem. 

The new approach is termed a Recursive Spectral Bisection method (RSB). The details of 
the RSB approach as well as comparisons with other approaches may be found in the 
above references. For DSDD we have chosen to use the grid cells as the basic quantities 
to be partitioned. This is primarily done because there are significantly fewer cells than 
edges and faces in the primary and dual grids. This results in a smaller and more efficient 
RSB process. 

First, a graph of the connectivity of the cells is constructed. We choose to define that two 
cells are connected as meaning that they share a face (other possibilities are that they 
share a node or an edge). From the graph the so-called "Laplacian Matrix" is formed. 
This matrix has a row and column for each cells in the grid. For a given row, negative 
ones are placed in the columns of the other cells which are connected to it The diagonal 
entry is found be summing the non-diagonal entries and placing the absolute value of this 
sum as the diagonal entry. 

This matrix is always singular (has a zero eigenvalue). This is easily seen as a vector 
consisting of all "ones" multiplied by the Laplacian matrix gives zero. All of the other 
non-zero eigenvalues are positive. Using a Lanczos algorithm the next smallest 
eigenvalue is computed and an eigenvector corresponding to this eigenvalue is found. 
The median entry of the eigenvector is found and the problem is split in half by assigning 
cells which correspond to eigenvector entries greater than the median value to one 
processor and those which correspond to entries less than the median value to the other 
processor. One significant drawback to the RSB method is that it produces partitions for 
numbers of processors which are a power of 2 only. 

17 DSI3D Theory Manual 



This simple sounding approach actually works quite well in practice. There is 
mathematical theory that states that if the original grid is connected that each of the 
produced sub-pdtions will also be connected. Stated another way, each processor will 
be working on a single sub-piece of the grid rather than a few ce!ls here and a few more 
from someplace distant in the grid. There is also theory that shows that the partitioning is 
close to optimal as far as the communication requirements go. It also is guaranteed to 
produce the same number of cells (k1) for each processor to process. 
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Communication Strategy 

Once each processor on the parallel computer has its sub-piece of the global grid defined, 
the processor will be responsible for computing and/or updating all of the edge-based 
variables which are associated with its piece of the grid. We note that there will be some 
duplication due to the fact that faces and edges which exist on a partition boundary will 
necessarily be shared with the other processor(s) which "owns" the cell(s) on the other 
side of the partition boundary. In order for a processor to be able to update all of its 
variables it will need have access to all of the other cells which share nodes on the 
partition boundary. The next figure shows a 2D grid with a partition boundary depicted as 
the heavy solid line. 

Processor 0 Other Processors 

Grid with processor partition depicted with heavy solid line 

As each processor does not know in the beginning what cells or processors it may be 
surrounded by, each processor must discover these relationships by communicating with 
the other processors. The first step in this process is that each processor identifies all of 
its own boundary nodes and elements. These nodes may be nodes which lie on the real 
physical problem boundary or the partition boundary or both. This boundary-element 
data is then successively sent to every other processor. At the same time as a processor 
sends its boundary data it also receives the boundary data from another processor. A 
processor then compares its own boundary data with that obtained from another processor 
looking for matches between the boundary node sets. When a match occurs, then data is 
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stored indicating which elements need to be sent to the other processor and also which 
elements need to be received fmm the other processor. This process is repeated n-1 times 
(where n is the number of processors being used) as if the processors were connected in a 
"ring-like" manner. After cornpletion of the boundary identification stage, each processor 
then actually sends all of its elements to the individual processors who need to have them. 
Again at the same time, a processor is receiving from the other processors all of the 
elements it requires. 

Send Receive 

Ringlike send / receive communication order for 
processor 0 - -  to discover neighboring cells belonging 

At the conclusion of this boundary element exchange stage, each processor will now have 
all of its original elements plus a layer of new elements which share its grid partition 
boundaries. At this point each processor has all of the geometry data which will be 
required to perform time step updates of all of its original edge and dual edge values. As 
a final step in setting up the communication tables which will be required in the time 
stepping update process, each processor must create a final communication table which 
lists all of the actual edge and dual edge field values it must sendreceive to/fmm other 
processors. This is readily generated from the previously generated boundary element 
exchange data. 
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Extra cells (shaded) obtained by processor 0 from neighboring processors. 

There is a somewhat subtle issue relating to obtaining the same results each time the code 
is run for the same problem which must be addressed. Because more than one processor 
will update edge values which lie on the grid partition boundaries, slightly different 
values for the same edge may be generated by the different prdcessors sharing the edge. 
This possibility arises because even though they have identical geometry information 
(node coordinates and elements definitions), they may use a different ordering of the 
arithmetic operations to compute a new edge value. Round-off errors will then cause 
slightly different values to be produced. When these different values are sent to other 
processors through the message passing communication system, it is usually not feasible 
to control the exact order in which messages arrive at another processor. As a result of 
this asynchronous behavior, the same code can produce different answers each time it is 
run even for the same problem. 

This potential randomness can be overcome by developing a unique "ownership" strategy 
for all of the problem variables. We do this in a simple but effective way by decreeing 
that an edge value is "owned" exclusively by the lowest numbered processor which 
shares the edge. This processor's value will then be the only value that will be used by 
any other processor. This strategy insures that with a constant partition of the grid and a 
constant number of processor being utilized for the solution process, identical results will 
be obtained each time the problem is run. Changing the grid partitioning or the number 
of processors being used may still give slightly different results. 

. 
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Vectorization Considerations 

When using nonorthogonal unstructured grids, a heavy penalty in computational 
efficiency can occur if sufficient care is not taken in structuring the computations and 
data. This will occur primarily because the inner-most loops involve a great deal of 
indirect addressing and the data may be accessed in rather random patterns. The basic 
DSI3D time stepping loops consist of dot products of vector coefficients with a vector of 
solution variables. These dot products can and will vary in length and involve indirect 
addressing. These conditions usually defeat most vectorizing compilers. 

We have found that most of this difficulty can be easily overcome by reordering and 
regrouping the data so that much of it lies consecutively in memory. We will rearrange 
the data so that all of the data for dot products of the same length lie consecutively in 
memory. The next diagram shows the original inner loop for updating the electric field 
edge projected values. Next to it is shown the new inner loop restructured to gain more 
efficiency. 

d o i =  1,hL.m 

hdot = 0. 

do j = ipth(i), ipth(i+l) - 1 

hdot = hdot + coefh(jj 

*&bPth(i)) 

enddo 

hds(i) = hds(i) - dt * hdot 

enddo 

The short, variable length inner loops that perform 
the dot products limit performance on vector 
computers very long inner loops 

Sorting the variable update order by loop length 
allows do-loop orders to be exchanged, leaving 

doL=l,maxLLen 

il = fmtHofLen(L) 

i2 = fmtHofTm(L+l) - 1 

jl = firstHCofLen(L) - il 
j2 = fmtHCofLen(L+l) - i l  - 1 

do j = j l ,  j2, HLengthCountG) 

do i =  il, i2 

hds(i) = hds(i) + ~0efh(i+j3 

* &(npth(i+-i)) 

enddo 

enddo 

enddo 
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The performance improvement using this reordering and rearranging technique is 
dramatic. On a Cray C-90 single cpu, the performance on the original loop was about 15- 
20 megaflops. The rearranged data loop now performs at about 307 megaflops. On the 
Meiko CS-2 parallel processing computer the performance improves from about 5 
megaflops to about 35 megaflops on each processor. We have even observed that the 
data restructuring also improves (to a lesser extent) the performance on scalar CPUs for 
various other machines. 
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Post-Processing 

Post-processing for DSI3D is somewhat different than for most other codes. This is in 
part due to the fact that full electric and magnetic field vectors are almost never computed 
in the code as a part of the basic solution algorithm. Rather, projected field values onto 
primary grid and dual grid edges are the basic quantities computed and used in DSI3D. 
Also, since DSI3D has been designed as a parallel computer code, the data does not 
reside all in one place in that it is distributed across many processors. Another fact is that 
there is very little in the way of parallel graphics software available on almost any of the 
parallel computers. 

The philosophy that we have adopted is that we will do all graphics post-processing not 
on the parallel computer but rather on workstations. This has several important 
implications. First, since the performance and capacity on most workstations is rather 
limited as compared to the parallel computer, it may not be possible to visualize all of the 
data together in one place at one time. Second, we will be required to develop software 
which will run on the parallel computer which will form and extract the data we desire to 
visualize. 
We have developed a parallel post-processing tool called DSI3DIO which performs the 
required tasks. When DSI3D is run on a parallel computer, it will produce restart dump 
files which contain the edge and dual edge data. These files will exist on the separate 
processors andor their local disk space. When DSI3DIO runs, it will read the original 
grid files and extract sup-pieces of the original grid as specified by the user. These sub- 
pieces may be planar cuts through the grid or particular material types. For the grid sub- 
pieces, DSI3DIO then uses the data in the restart files to build or interpolate full vector 
field data which will exist at the nodes of the grid sub-pieces. The code will then produce 
a reduced ascii grid file (which contains only the boundary cells of the region specified 
by the user) and ascii files containing the vector field data for this reduced grid. 
Currently, one can form electric field vectors, magnetic field vectors and Poynting vector 
field data. This data which will be much smaller than the entire problem data is then 
moved to a workstation and can be visualized with many different graphics software 
packages. 
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