High temperature electrochemical polishing of H{sub 2}S from coal gasification process stream. Quarterly progress report, January 1, 1995--March 31, 1995

PDF Version Also Available for Download.

Description

An advanced process for the separation of hydrogen sulfide (H{sub 2}S) from coal gasification product streams through an electrochemical membrane is being developed. H{sub 2}S is removed from the syn-gas stream, split into hydrogen, which enriches the exiting syn-gas, and sulfur, which is condensed from an inert sweep gas stream. The process allows removal of H{sub 2}S without cooling the gas stream and with negligible pressure loss through the separator. The process is made economically attractive by the lack of need for a Claus process for sulfur recovery. To this extent the project presents a novel concept for improving utilization ... continued below

Physical Description

19 p.

Creation Information

Winnick, J. August 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

An advanced process for the separation of hydrogen sulfide (H{sub 2}S) from coal gasification product streams through an electrochemical membrane is being developed. H{sub 2}S is removed from the syn-gas stream, split into hydrogen, which enriches the exiting syn-gas, and sulfur, which is condensed from an inert sweep gas stream. The process allows removal of H{sub 2}S without cooling the gas stream and with negligible pressure loss through the separator. The process is made economically attractive by the lack of need for a Claus process for sulfur recovery. To this extent the project presents a novel concept for improving utilization of coal for more efficient power generation. Past experiments using this concept dealt with identifying removal of 1--2% H{sub 2}S from gases containing only H{sub 2}S in N{sub 2}, simulated natural gas, and simulated coal gas. Data obtained from these experiments resulted in extended studies into electrode kinetics and electrode stability in molten melts. The most recent experiments evaluated the polishing application (removal Of H{sub 2}S below 10 ppm) using the Electrochemical Membrane Separator (EMS). H{sub 2}S removal efficiencies over 90% were achieved at these stringent conditions of low H{sub 2}S concentrations proving the technologies polishing capabilities. Other goals include optimization of cell materials capable of improving cell performance. Once cell materials are defined, cell experiments determining maximum removal capabilities and current efficiencies will be conducted. Also, a model theoretically describing the preferred reduction of H{sub 2}S, the transport of S{sup 2{minus}}, and the competing transport of CO{sub 2} will be investigated. The model should identify the maximum current efficiency for H{sub 2}S removal, depending on variables such as flow rate, temperature, current application, and the total cell potential.

Physical Description

19 p.

Notes

OSTI as DE95016270

Source

  • Other Information: PBD: [1995]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE95016270
  • Report No.: DOE/PC/94207--T3
  • Grant Number: FG22-94PC94207
  • DOI: 10.2172/105664 | External Link
  • Office of Scientific & Technical Information Report Number: 105664
  • Archival Resource Key: ark:/67531/metadc623980

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Jan. 17, 2018, 1:11 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Winnick, J. High temperature electrochemical polishing of H{sub 2}S from coal gasification process stream. Quarterly progress report, January 1, 1995--March 31, 1995, report, August 1, 1995; Atlanta, Georgia. (digital.library.unt.edu/ark:/67531/metadc623980/: accessed October 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.