Master plate production for the tile calorimeter extended barrel modules.

PDF Version Also Available for Download.

Description

Approximately 41,000 master plates (Fig. 1) are required for the Extended Barrel Hadronic Calorimeter for the ATLAS experiment at the LHC. Early in the R&D program associated with the detector, it was recognized that the fabrication of these steel laminations was a significant issue, both in terms of the cost to produce these high precision formed plates, as well as the length of time required to produce all plates for the calorimeter. Two approaches were given serious consideration: laser cutting and die stamping. The Argonne group was a strong supporter of the latter approach and in late 1995 initiated an ... continued below

Physical Description

16 p.

Creation Information

Guarino, V.J.; Hill, N.; Petereit, E.; Price, L.E.; Proudfoot, J. & Wood, K. March 10, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Approximately 41,000 master plates (Fig. 1) are required for the Extended Barrel Hadronic Calorimeter for the ATLAS experiment at the LHC. Early in the R&D program associated with the detector, it was recognized that the fabrication of these steel laminations was a significant issue, both in terms of the cost to produce these high precision formed plates, as well as the length of time required to produce all plates for the calorimeter. Two approaches were given serious consideration: laser cutting and die stamping. The Argonne group was a strong supporter of the latter approach and in late 1995 initiated an R&D program to demonstrate the feasibility and cost effectiveness of die stamping these plates by constructing a die and stamping approximately 2000 plates for use in construction of three full size prototype modules. This was extremely successful and die stamping was selected by the group for production of these plates. When the prototype die was constructed it was matched to the calorimeter envelope at that time. This subsequently changed. However with some minor adjustments in the design envelope and a small compromise in terms of instrumented volume, it became possible to use this same die for the production of all master plates for the Tile Calorimeter. Following an extensive series of discussions and an evaluation of the performance of the stamping presses available to our collaborators in Europe, it was decided to ship the US die to CERN for use in stamping master plates for the barrel section of the calorimeter. This was done under the supervision of CERN and JINR, Dubna, and carried out at the TATRA truck plant at Koprivinice, Czech Republic. It was a great success. Approximately 41,000 plates were stamped and fully met specification. Moreover, the production time was significantly reduced by avoiding the need of constructing and then qualifying a second die for use in Europe. This also precluded small geometrical differences between the barrel and extended barrel plates (and therefore submodules) being an issue, with the result that standard submodules are fully exchangeable between the two types of module.

Physical Description

16 p.

Notes

OSTI as DE00012019

Medium: P; Size: 16 pages

Source

  • Other Information: PBD: 10 Mar 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ANL-HEP-TR-99-04
  • Grant Number: W-31109-ENG-38
  • DOI: 10.2172/12019 | External Link
  • Office of Scientific & Technical Information Report Number: 12019
  • Archival Resource Key: ark:/67531/metadc623913

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 10, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 7, 2017, 3:18 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Guarino, V.J.; Hill, N.; Petereit, E.; Price, L.E.; Proudfoot, J. & Wood, K. Master plate production for the tile calorimeter extended barrel modules., report, March 10, 1999; Illinois. (digital.library.unt.edu/ark:/67531/metadc623913/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.