Direct observation of resonance effects in laser cluster interactions

PDF Version Also Available for Download.

Description

Time resolved dynamics of high intensity laser interactions with atomic clusters have been studied with both theoretical analysis and experiment. A short-pulse Ti:sapphire laser system, which could produce 50 mJ of energy in a 50 fs pulse, was built to perform these experiments. The laser used a novel single grating stretcher and was pumped, in part, by a custom Nd:YLF laser system, including 19 mm Nd:YLF amplifiers. It was found that there is an optimal pulse width to maximize absorption for a given cluster size. This optimal pulse width ranged from 400 fs for 85 A radius xenon clusters to ... continued below

Physical Description

9.6 Megabytes pages

Creation Information

Zweiback, J June 1, 1999.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

Time resolved dynamics of high intensity laser interactions with atomic clusters have been studied with both theoretical analysis and experiment. A short-pulse Ti:sapphire laser system, which could produce 50 mJ of energy in a 50 fs pulse, was built to perform these experiments. The laser used a novel single grating stretcher and was pumped, in part, by a custom Nd:YLF laser system, including 19 mm Nd:YLF amplifiers. It was found that there is an optimal pulse width to maximize absorption for a given cluster size. This optimal pulse width ranged from 400 fs for 85 A radius xenon clusters to 1.2 ps for 205 {angstrom} radius xenon clusters. Using a pump-probe configuration, the absorption of the probe radiation was observed to reach a maximum for a particular time delay between pump and probe, dependent on the cluster size. The delay for peak absorption was 800, 1400, and 2100 fs for 85 {angstrom}, 130 {angstrom}, and 170 {angstrom} radius xenon clusters respectively. Model calculations suggest that these effects are due to resonant heating of the spherical plasma in agreement with the hydrodynamic interpretation of cluster interactions. While this simple hydrodynamic code produces reasonable agreement with data, it does not include bulk plasma or non-linear propagation effects and is limited to the regime where resonant behavior dominates. We also measured the scattered laser light from the laser-cluster interaction. Similar to the absorption measurements, there is an optimal pulse width which maximizes the scattered signal. This pulse width is larger than the optimal pulse width for absorption. This disagrees with model calculations which show both pulse widths being similar. Further experiments measuring the scattered light in a pump-probe configuration should help to resolve this disagreement.

Physical Description

9.6 Megabytes pages

Source

  • Other Information: TH: Thesis; No thesis information supplied

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Report No.: UCRL-LR-134008
  • Report No.: DP0214000
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 11313
  • Archival Resource Key: ark:/67531/metadc623717

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • June 1, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • May 6, 2016, 2:22 p.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 9

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Zweiback, J. Direct observation of resonance effects in laser cluster interactions, thesis or dissertation, June 1, 1999; California. (digital.library.unt.edu/ark:/67531/metadc623717/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.