Laser beam welding of AZ31B-H24 magnesium alloy.

PDF Version Also Available for Download.

Description

The laser beam weldability of AZ31B magnesium alloy was examined with high power CW CO{sub 2} and pulsed Nd:YAG lasers. The low viscosity and surface tension of the melt pool make magnesium more difficult to weld than steel. Welding parameters necessary to obtain good welds were determined for both CW CO{sub 2} and pulsed Nd:YAG lasers. The weldability of the magnesium alloy was significantly better with the Nd:YAG laser. The cause of this improvement was attributed to the higher absorption of the Nd:YAG beam. A lower threshold beam irradiance was required for welding, and a more stable weldpool was obtained.

Physical Description

11 p.

Creation Information

Leong, K. H. September 29, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 34 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The laser beam weldability of AZ31B magnesium alloy was examined with high power CW CO{sub 2} and pulsed Nd:YAG lasers. The low viscosity and surface tension of the melt pool make magnesium more difficult to weld than steel. Welding parameters necessary to obtain good welds were determined for both CW CO{sub 2} and pulsed Nd:YAG lasers. The weldability of the magnesium alloy was significantly better with the Nd:YAG laser. The cause of this improvement was attributed to the higher absorption of the Nd:YAG beam. A lower threshold beam irradiance was required for welding, and a more stable weldpool was obtained.

Physical Description

11 p.

Notes

OSTI as DE00010805

Medium: P; Size: 11 pages

Source

  • 17th International Congress on Applications of Lasers and Electro-Optics (ICALEO '98), Orlando, FL (US), 11/16/1998--11/19/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/TD/CP-96465
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 10805
  • Archival Resource Key: ark:/67531/metadc623699

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 29, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 6, 2017, 7:41 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 34

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Leong, K. H. Laser beam welding of AZ31B-H24 magnesium alloy., article, September 29, 1998; Illinois. (digital.library.unt.edu/ark:/67531/metadc623699/: accessed December 12, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.