National Spherical Torus Experiment (NSTX) and Planned Research

PDF Version Also Available for Download.

Description

The U.S. fusion energy sciences program began in 1996 to increase emphasis on confinement concept innovation. The NSTX [1,2] is being built at PPPL as a national fusion science research facility in response to this emphasis. NSTX is to test fusion science principles of the Spherical Torus (ST) plasmas, which include: (1) High plasma pressure in low magnetic field for high fusion power density, (2) Good energy confinement is a small-size plasma, (3) Nearly fully self-driven (bootstrap) plasma current, (4) Dispersed heat and particle fluxes, and (5) Plasma startup without complicated inboard solenoid magnet. These properties of the ST plasma, ... continued below

Physical Description

5 pages

Creation Information

Kaye, S.; Neumeyer, C.; Ono, M. & Peng, M. November 13, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The U.S. fusion energy sciences program began in 1996 to increase emphasis on confinement concept innovation. The NSTX [1,2] is being built at PPPL as a national fusion science research facility in response to this emphasis. NSTX is to test fusion science principles of the Spherical Torus (ST) plasmas, which include: (1) High plasma pressure in low magnetic field for high fusion power density, (2) Good energy confinement is a small-size plasma, (3) Nearly fully self-driven (bootstrap) plasma current, (4) Dispersed heat and particle fluxes, and (5) Plasma startup without complicated inboard solenoid magnet. These properties of the ST plasma, if verified, would lead to possible future fusion devices of high fusion performance, small size, feasible power handling, and improved economy. The design of NSTX is depicted in Fig.1. The device is designed to study plasmas with major radius up to 85 cm, minor radius up to 68 cm, elongation up to 2, with flexibility in forming double-null, single-null, and inboard limited plasmas. The nominal operation calls for a toroidal field of 0.3 T for 5 s at the major radius, and a plasma current at 1 MA with q {approximately} 10 at edge. It features a compact center stack containing the inner legs of the toroidal field coils, a full size solenoid capable of delivering 0.6 Wb induction, inboard vacuum vessel, and composite carbon tiles. The center stack can be replaced without disturbing the main device, diagnostics, and auxiliary systems. The vessel will be covered fully with graphite tiles and can be baked to 350 C. Other wall conditioning techniques are also planned.

Physical Description

5 pages

Notes

INIS; OSTI as DE00014608

Source

  • Conference title not supplied, Conference location not supplied, Conference dates not supplied

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ORNL/CP-104935
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 14608
  • Archival Resource Key: ark:/67531/metadc623600

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 13, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Jan. 19, 2016, 8:25 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kaye, S.; Neumeyer, C.; Ono, M. & Peng, M. National Spherical Torus Experiment (NSTX) and Planned Research, article, November 13, 1999; Tennessee. (digital.library.unt.edu/ark:/67531/metadc623600/: accessed December 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.