Fundamental chemistry and thermodynamics of hydrothermal oxidation processes. 1997 annual progress report

PDF Version Also Available for Download.

Description

'The objective of this research program is to provide fundamental scientific information on the physical and chemical properties of solutes in aqueous solutions at high temperatures needed to assess and improve the applicability of hydrothermal oxidation (HTO) to the remediation of US Department of Energy (DOE) hazardous and mixed wastes. Investigators in two divisions at Oak Ridge National Laboratory (Chemical and Analytical Sciences, and Chemical Technology) and at the University of Tennessee are focused on the solubility and speciation of actinides and surrogates in model HTO process streams at high temperatures, on the experimental and theoretical development of equations of ... continued below

Physical Description

7 pages

Creation Information

Simonson, J. M.; Mesmer, R. E.; Blencoe, J. G.; Cummings, P. T. & Chialvo, A. A. September 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

'The objective of this research program is to provide fundamental scientific information on the physical and chemical properties of solutes in aqueous solutions at high temperatures needed to assess and improve the applicability of hydrothermal oxidation (HTO) to the remediation of US Department of Energy (DOE) hazardous and mixed wastes. Investigators in two divisions at Oak Ridge National Laboratory (Chemical and Analytical Sciences, and Chemical Technology) and at the University of Tennessee are focused on the solubility and speciation of actinides and surrogates in model HTO process streams at high temperatures, on the experimental and theoretical development of equations of state for aqueous mixtures containing noncondensible gases under HTO process conditions ranging above the critical temperature of water, and on achieving a predictive level of understanding of the chemical and physical properties of HTO process streams through molecular-level simulations of aqueous solutions at high temperatures. Specific tasks in these three efforts over the past year include measurements of solubility and identification of stable solid phases for UO{sub 3} in aqueous carbonate solutions at temperatures above 100 C, measurements of fluid-phase coexistence boundaries and densities of mixtures in (H{sub 2}O + N{sub 2} + CO{sub 2}) mixtures at high temperatures and pressures, and molecular dynamics simulations of water and aqueous solutions addressing the speciation of simple ionic solutes and the structure of water and aqueous solutions as functions of temperature and density. Research in this project has been divided into individual tasks, each addressing a particular scientific question and each contributing to a unified understanding of HTO processing problems related to the treatment of DOE hazardous and mixed wastes. The three primary tasks are (1) the determination of solubilities of inorganic compounds including actinides and surrogates to determine their likely fate during HTO processing, (2) experimental and modeling studies of the density and phase behavior of (water + gas) mixtures at high temperatures to determine the physical state of the process fluid, and (3) simulations of water and aqueous solutions at high temperatures and comparison with experimental results as a method for the development of accurate, comprehensive descriptions of the properties of aqueous fluids.'

Physical Description

7 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE00013648
  • Report No.: EMSP-55276--97
  • Grant Number: NONE
  • DOI: 10.2172/13648 | External Link
  • Office of Scientific & Technical Information Report Number: 13648
  • Archival Resource Key: ark:/67531/metadc623576

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 1997

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • June 13, 2016, 4:27 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 11

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Simonson, J. M.; Mesmer, R. E.; Blencoe, J. G.; Cummings, P. T. & Chialvo, A. A. Fundamental chemistry and thermodynamics of hydrothermal oxidation processes. 1997 annual progress report, report, September 1, 1997; Tennessee. (digital.library.unt.edu/ark:/67531/metadc623576/: accessed April 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.