Coupling parameters for partially reflected reactors

PDF Version Also Available for Download.

Description

For situations in which the standard point kinetic model does not adequately characterize the kinetic behavior of a reflected system, the Avery-Cohn differential equations can be used. However, these equations require that one determine the coupling parameters between the core and the reflector, f{sub cr} and f{sub rc}. The coupling parameter, f{sub cr}, represents the probability that a neutron in the core will leak into the reflector, and the coupling parameter, f{sub rc}, represents the probability that a neutron in the reflector will scatter back into the core. As discussed in Reference 3, these two coupling parameters can be calculated ... continued below

Physical Description

4 p.

Creation Information

Busch, R.D. & Spriggs, G.D. July 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

  • Busch, R.D. Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering
  • Spriggs, G.D. Los Alamos National Lab., NM (United States)

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

For situations in which the standard point kinetic model does not adequately characterize the kinetic behavior of a reflected system, the Avery-Cohn differential equations can be used. However, these equations require that one determine the coupling parameters between the core and the reflector, f{sub cr} and f{sub rc}. The coupling parameter, f{sub cr}, represents the probability that a neutron in the core will leak into the reflector, and the coupling parameter, f{sub rc}, represents the probability that a neutron in the reflector will scatter back into the core. As discussed in Reference 3, these two coupling parameters can be calculated from the multiplication factor of the bare core, k{sub c}, the effective multiplication factor of the integral system, k{sub eff}, and the fraction of system neutrons absorbed in the core region, P{sub ca}. The methodology presented in Ref. 3 was described for a fully reflected system, but it is also applicable to some types of partially reflected systems. In particular, it is applicable to those systems where neutrons leaving any core surface not contiguous to the reflector have a zero probability of entering the reflector. In other words, these surfaces have a view factor of 0 to all reflector surfaces in the system. However, if the view factor between an unreflected core surface and a reflector surface is not zero, then the aforementioned methodology has to be modified. To calculate f{sub cr}, one must include an estimate of the single-pass probability that a neutron escapes from the core to infinity, f{sub ci}. This is accomplished by including a view factor(s) in the calculations that accounts for the fraction of neutrons that are not traveling on a line intersecting some portion of the reflector. This paper illustrates this modification by assuming the partially reflected system shown in Fig. 1c.

Physical Description

4 p.

Notes

INIS; OSTI as DE95015291

Source

  • 1995 International mechanical engineering congress and exhibition, San Francisco, CA (United States), 12-17 Nov 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95015291
  • Report No.: LA-UR--95-2028
  • Report No.: CONF-951135--15
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 102189
  • Archival Resource Key: ark:/67531/metadc623540

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Feb. 25, 2016, 2:17 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Busch, R.D. & Spriggs, G.D. Coupling parameters for partially reflected reactors, article, July 1, 1995; New Mexico. (digital.library.unt.edu/ark:/67531/metadc623540/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.