Application of High Performance Computing for Automotive Design and Manufacturing

PDF Version Also Available for Download.

Description

This project developed new computer simulation tools which can be used in DOE internal combustion engine and weapons simulation programs currently being developed. Entirely new massively parallel computer modeling codes for chemically reactive and incompressible fluid mechanics with interactive physics sub-models were developed. Chemically reactive and aerodynamic flows are central parts in many DOE systems. Advanced computer modeling codes with new chemistry and physics capabilities can be used on massively parallel computers to handle more complex problems associated with chemically reactive propulsion systems, energy efficiency, enhanced performance and durability, multi-fuel capability and reduced pollutant emissions. The work for this project ... continued below

Physical Description

6 pages

Creation Information

Zacharia, T. April 1, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

  • Oak Ridge Y-12 Plant
    Publisher Info: Oak Ridge Y-12 Plant, TN (United States)
    Place of Publication: Tennessee

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This project developed new computer simulation tools which can be used in DOE internal combustion engine and weapons simulation programs currently being developed. Entirely new massively parallel computer modeling codes for chemically reactive and incompressible fluid mechanics with interactive physics sub-models were developed. Chemically reactive and aerodynamic flows are central parts in many DOE systems. Advanced computer modeling codes with new chemistry and physics capabilities can be used on massively parallel computers to handle more complex problems associated with chemically reactive propulsion systems, energy efficiency, enhanced performance and durability, multi-fuel capability and reduced pollutant emissions. The work for this project is also relevant to the design, development and application of advanced user-friendly computer codes for new high-performance computing platforms for manufacturing and which will also impact and interact with the U.S.'s advanced communications program. Finite element method (FEM) formulations were developed that are directly usable in simulating rapid deformation resulting from collision, impact, projectiles, etc. This simulation capability is applicable to both DOE (e.g., surety and penetration) and DoD (e.g., armor) applications. The models of plate and shell composite structures were developed for simulation of glass continuous strand mat and braided composite in thermoset polymer matrix. The developed numerical tools based upon the fundamental mechanisms responsible for damage evolution in continuous-fiber organic-matrix composites. This class of materials is especially relevant because of their high strength to mass ratio, anisotropic behavior, and general application in most transportation and weapon delivery systems. The high-performance computational tools developed are generally applicable to a broad spectrum of materials with similar fiber structures.

Physical Description

6 pages

Source

  • Other Information: PBD: 1 Apr 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: Y/AMT-623
  • Report No.: Project Number 92-MULT-026-B2-04
  • Grant Number: AC05-84OR21400
  • DOI: 10.2172/10665 | External Link
  • Office of Scientific & Technical Information Report Number: 10665
  • Archival Resource Key: ark:/67531/metadc623408

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • May 6, 2016, 2:13 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Zacharia, T. Application of High Performance Computing for Automotive Design and Manufacturing, report, April 1, 1999; Tennessee. (digital.library.unt.edu/ark:/67531/metadc623408/: accessed September 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.