Low efficiency gratings for 3rd harmonic diagnostics applications

PDF Version Also Available for Download.

Description

The baseline design of the National Ignition Facility (NIF) calls for sampling gratings to provide third-harmonic energy diagnostics in the highly constrained area of the target chamber. These 40 {times} 4O cm transmission gratings are to diffract at (order +1) nominally 0.3% of the incident 351 run light at a small angle on to a focusing mirror and into a calorimeter. The design calls for a plane grating of 500 lines/mm, and approximately 30 run deep, etched into a fused silica focusing lens and subsequently overcoated with a solgel anti reflective coating. Gratings of similar aperture and feature size have ... continued below

Physical Description

9 p.

Creation Information

Britten, J.A.; Boyd, R.D.; Perry, M.D.; Shore, B.W. & Thomas, I.M. August 9, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The baseline design of the National Ignition Facility (NIF) calls for sampling gratings to provide third-harmonic energy diagnostics in the highly constrained area of the target chamber. These 40 {times} 4O cm transmission gratings are to diffract at (order +1) nominally 0.3% of the incident 351 run light at a small angle on to a focusing mirror and into a calorimeter. The design calls for a plane grating of 500 lines/mm, and approximately 30 run deep, etched into a fused silica focusing lens and subsequently overcoated with a solgel anti reflective coating. Gratings of similar aperture and feature size have been produced for other applications by ion etching processes, but, in an effort to reduce substantially the cost of such optics, we are studying the feasibility of making these gratings by wet chemical etching techniques. Experimentation with high-quality fused silica substrates on 5 and 15 cm. scale has led to a wet etching process which can meet the design goals and which offers no significant scaleup barriers to full sized optics. The grating is produced by holographic exposure and a series of processing steps using only a photoresist mask and a final hydrofluoric acid etch. Gratings on 15 cm diameter test substrates exhibit absolute diffraction efficiencies from 0.2--0.4% with a standard deviation of about 15% of the mean over the full aperture. The efficiency variation is due to variation in linewidth caused by spatial nonuniformities in exposure energy. Uniformity improvements can be realized by using a smaller, more uniform portion of the exposure beam and exposing for longer times. The laser damage threshold for these gratings has been measured at LLNL and found to be identical to that of the fused silica substrate.

Physical Description

9 p.

Notes

INIS; OSTI as DE96000339

Source

  • 1. annual solid-state lasers for application to inertial confinement fusion meeting, Monterey, CA (United States), 30 May - 2 Jun 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96000339
  • Report No.: UCRL-JC--120707
  • Report No.: CONF-9505264--15
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 106478
  • Archival Resource Key: ark:/67531/metadc623378

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 9, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Feb. 19, 2016, 11:07 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Britten, J.A.; Boyd, R.D.; Perry, M.D.; Shore, B.W. & Thomas, I.M. Low efficiency gratings for 3rd harmonic diagnostics applications, article, August 9, 1995; California. (digital.library.unt.edu/ark:/67531/metadc623378/: accessed October 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.