Wind-induced interaction of a large cylindrical calorimeter and an engulfing JP-8 pool fire

PDF Version Also Available for Download.

Description

As part of a research program in fire science and technology at Sandia National Laboratories (SNL), an experimental and computational investigation of the fire phenomenology associated with the presence of a large (3.66 m diameter), fuselage-sized cylindrical calorimeter engulfed in a large (18.9 m diameter) JP-8 pool fire subjected to high (10.2 m/s) winds were performed. The conditions investigated here resulted in a twofold increase in the incident heat flux to the surface of the object relative to heat fluxes typical of large hydrocarbon fires without engulfed objects. Due to the enhanced fuel/air mixing, enhanced turbulence, and larger flame volume, ... continued below

Physical Description

6 p.

Creation Information

Gritzo, L.A.; Nicolette, V.F.; Murray, D.; Moya, J.L. & Skocypec, R.D. August 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

As part of a research program in fire science and technology at Sandia National Laboratories (SNL), an experimental and computational investigation of the fire phenomenology associated with the presence of a large (3.66 m diameter), fuselage-sized cylindrical calorimeter engulfed in a large (18.9 m diameter) JP-8 pool fire subjected to high (10.2 m/s) winds were performed. The conditions investigated here resulted in a twofold increase in the incident heat flux to the surface of the object relative to heat fluxes typical of large hydrocarbon fires without engulfed objects. Due to the enhanced fuel/air mixing, enhanced turbulence, and larger flame volume, the highest heat fluxes are observed on the leeward side of the calorimeter. Radiative heat fluxes of 150--250 kW/m{sup 2} on this side, with the maximum heat flux occurring near the top of the calorimeter, were measured. Radiative heat fluxes of 60--200 kW/m{sup 2} were measured on the windward side, with the highest heat flux near the bottom of the calorimeter. Measured and predicted heat fluxes to the pool surface of 25--90 kW/m{sup 2} were observed. The presence of the calorimeter tends to decrease the overall fuel consumption rate primarily due to redirection of the flame zone away from the pool surface. Overall, the numerical models does a reasonable job of representing the essential features of the fire environment but under predicts the heat flux to the calorimeter. These results emphasize the importance of considering the wind-induced interaction of fires and large objects when estimating the incident heat fluxes on a engulfed object. The measurements and analyses are of particular interest since few studies to date have addressed cases where the fire and object are of comparable size.

Physical Description

6 p.

Notes

OSTI as DE95015851

Source

  • 1995 International mechanical engineering congress and exhibition, San Francisco, CA (United States), 12-17 Nov 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95015851
  • Report No.: SAND--95-1635C
  • Report No.: CONF-951135--13
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 106488
  • Archival Resource Key: ark:/67531/metadc623293

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 14, 2016, 2:21 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Gritzo, L.A.; Nicolette, V.F.; Murray, D.; Moya, J.L. & Skocypec, R.D. Wind-induced interaction of a large cylindrical calorimeter and an engulfing JP-8 pool fire, article, August 1, 1995; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc623293/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.