Application of the bootstrap to the analysis of vibration test data

PDF Version Also Available for Download.

Description

Structural dynamic testing is concerned with estimation of system properties, including frequency response functions and modal characteristics. These properties are derived from tests on the structure of interest, during which excitations and responses are measured and Fourier techniques are used to reduce the data. The inputs used in a test are frequently radom and excite random responses in the structure of interest. When these random inputs and responses are analyzed they yield estimates of system properties that are random variable and random process realizations. Of course, such estimates of system properties vary randomly from one test to another, but even ... continued below

Physical Description

10 p.

Creation Information

Hunter, N.F. & Paez, T.L. August 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

  • Hunter, N.F. Los Alamos National Lab., NM (United States)
  • Paez, T.L. Sandia National Labs., Albuquerque, NM (United States)

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Structural dynamic testing is concerned with estimation of system properties, including frequency response functions and modal characteristics. These properties are derived from tests on the structure of interest, during which excitations and responses are measured and Fourier techniques are used to reduce the data. The inputs used in a test are frequently radom and excite random responses in the structure of interest. When these random inputs and responses are analyzed they yield estimates of system properties that are random variable and random process realizations. Of course, such estimates of system properties vary randomly from one test to another, but even when deterministic inputs are used to excite a structure, the estimated properties vary from test to test. When test excitations and responses are normally distributed, classical techniques permit us to statistically analyze inputs, responses, and system parameters. However, when the input excitations are non-normal, the system is nonlinear, and/or the property of interest is anything but the simplest, the classical analyses break down. The bootstrap is a technique for the statistical analysis of data that are not necessarily normally distributed. It can be used to statistically analyze any measure of input excitation on response, or any system property, when data are available to make an estimate. It is designed to estimate the standard error, bias, and confidence intervals of parameter estimates. This paper shows how the bootstrap can be applied to the statistical analysis of modal parameters.

Physical Description

10 p.

Notes

OSTI as DE95016742

Source

  • 66. shock and vibration symposium, Biloxi, MS (United States), 31 Oct - 3 Nov 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95016742
  • Report No.: SAND--95-1901C
  • Report No.: CONF-9510195--1
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 105787
  • Archival Resource Key: ark:/67531/metadc623281

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 13, 2016, 12:55 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hunter, N.F. & Paez, T.L. Application of the bootstrap to the analysis of vibration test data, article, August 1, 1995; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc623281/: accessed December 12, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.