On the Connection Between the Discrete Dislocation Slip Model and the Orowan Equation

PDF Version Also Available for Download.

Description

Within the framework of thermodynamic theory of plasticity and specific structural-variables (associated with individual dislocations), a transition has been made to an expression containing one internal variable of the averaging type--the density of glissile dislocations, N{sub g}. This expression should be considered a tensorial generalization of the well-known Orowan's equation and relates it directly to the simplest possible case of normal flow in metallic materials. Since most metals display deviations from normality in the flow rule{sup 7} it also clearly indicates that more rigorous assessment of the relation between plastic strain rate and dislocation populations is required especially for materials ... continued below

Physical Description

8 p.

Creation Information

Braginsky, Michael V.; Glazov, Michael V. & Richmond, Owen September 8, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 25 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Within the framework of thermodynamic theory of plasticity and specific structural-variables (associated with individual dislocations), a transition has been made to an expression containing one internal variable of the averaging type--the density of glissile dislocations, N{sub g}. This expression should be considered a tensorial generalization of the well-known Orowan's equation and relates it directly to the simplest possible case of normal flow in metallic materials. Since most metals display deviations from normality in the flow rule{sup 7} it also clearly indicates that more rigorous assessment of the relation between plastic strain rate and dislocation populations is required especially for materials displaying plastic instabilities in the form of dislocation patterning, strain-softening and strain-rate softening phenomena. The obtained result could be a useful starting point in establishing such rigorous macroscopic relations from microscopic considerations associated with individual dislocations and to find useful applications in dislocation density-related constitutive modeling of plastic deformation.

Physical Description

8 p.

Notes

OSTI as DE00012665

Medium: P; Size: 8 pages

Source

  • Journal Name: Journal of Applied Physics; Other Information: Submitted to Journal of Applied Physics

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND99-2290J
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 12665
  • Archival Resource Key: ark:/67531/metadc623277

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 8, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 11, 2017, 6:03 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 25

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Braginsky, Michael V.; Glazov, Michael V. & Richmond, Owen. On the Connection Between the Discrete Dislocation Slip Model and the Orowan Equation, article, September 8, 1999; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc623277/: accessed May 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.