ENGINEERING DATA TRANSMITTAL

2. To: (Receiving Organization)
3. From: (Originating Organization)
4. Related EDT No.: N/A
5. Proj./Prog./Dept./Div.: K6176/PFP Engineering/15500
6. Design Authority/Design Agent/CoG. Engr.: J. F. Durnil
7. Purchase Order No.: N/A
8. Originator Remarks:
 Basis document for ion exchange process.
9. Equip./Component No.: N/A
10. System/Bldg./Facility:
11. Receiver Remarks:
 11A. Design Baseline Document? [] Yes [X] No
12. Major Asm. Dwg. No.: N/A
13. Permit/Permit Application No.: N/A
14. Required Response Date: N/A
15. DATA TRANSMITTED

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Document/Drawing No.</th>
<th>Sheet No.</th>
<th>Rev. No.</th>
<th>Title or Description of Data Transmitted</th>
<th>Approval Designator</th>
<th>Reason for Transmitting</th>
<th>Disposition</th>
<th>Receiver Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HNF-SD-CP-OCD-044</td>
<td>0</td>
<td></td>
<td>Basis Document</td>
<td>S</td>
<td>1.2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

16. KEY
E, S, O, D or N/A
(See WHC-CM-3-5, Sec. 12.7)
1. Approval
2. Release
3. Information Dist. (Receipt Acknowledged)
4. Review
5. Post-Review
6. Receipt acknowledged
7. Disapproved w/comments
8. Approved w/comments
9. Reviewed no/comments
10. Reviewed w/comments
11. Approved w/comments
12. Disapproved
13. Approved
14. Review

17. SIGNATURE/DISTRIBUTION
(See Approval Designator for required signatures)

<table>
<thead>
<tr>
<th>Approval Designator</th>
<th>Reason for Transmitting</th>
<th>Disposition</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>E, S, O, D or N/A</td>
<td>1. Approval</td>
<td>Approved</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Release</td>
<td>Approved</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Information</td>
<td>Approved w/comments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Review</td>
<td>Approved w/comments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Post-Review</td>
<td>Approved w/comments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Receipt acknowledged</td>
<td>Approved w/comments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Disapproved w/comments</td>
<td>Disapproved w/comments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. Approved w/comments</td>
<td>Approved w/comments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. Reviewed no/comments</td>
<td>Reviewed no/comments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10. Reviewed w/comments</td>
<td>Reviewed w/comments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11. Approved w/comments</td>
<td>Approved w/comments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12. Disapproved</td>
<td>Disapproved</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13. Approved</td>
<td>Approved</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14. Review</td>
<td>Review</td>
<td></td>
</tr>
</tbody>
</table>

18. Signature of EDT Orig.
19. Authorized Representative Orig.
20. Cognizant Manager
21. DOE APPROVAL (if required)

<table>
<thead>
<tr>
<th>Reason for Transmitting</th>
<th>Disposition</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved</td>
<td>Approved</td>
<td></td>
</tr>
<tr>
<td>Approved w/comments</td>
<td>Approved w/comments</td>
<td></td>
</tr>
<tr>
<td>Disapproved w/comments</td>
<td>Disapproved w/comments</td>
<td></td>
</tr>
</tbody>
</table>

BD-7400-172-2 (05/96) GEF097
BASIS DOCUMENT FOR PFP
PLUTONIUM NITRATE ION EXCHANGE PROCESS IN ROOM 228A

H. Rees Risenmay
B&W Hanford Co., Richland, WA 99352
U.S. Department of Energy Contract DE-AC06-96RL13200

EDT/ECN: 617748 UC: 711
Org Code: 15530 Charge Code: K6176
B&R Code: EW7040000 Total Pages: 9

Key Words: Ion Exchange Column, Anion Exchange Resin, Plutonium, Nitrate

Abstract: An ion exchange process will be installed in glovebox HC-7 in room 228A/234-5Z to remove impurities from Plutonium Nitrate solutions that would interfere with the Operation of the Vertical Denitration Calciners.

Reillex is a registered trademark of Reilly Industries Inc., Indianapolis, IN.
Basis Document for PFP Plutonium Nitrate Ion Exchange Process in Room 228A

Prepared by:
H. Rees Risenmay
Senior Engineer
PFP Process Engineering
TABLE OF CONTENTS

Introduction ... 3

1 FEED SPECIFICATION ... 3
 1.1 Feed Acid Concentration .. 3
 1.2 Cycle Plutonium Loading .. 4
 1.3 Ion Exchange Column Wash ... 5
 1.4 Ion Exchange Column Elution .. 5

2 PRODUCT SPECIFICATION ... 7
 2.1 Eluate Requirement Product Quality .. 7

3 ION EXCHANGE COLUMN OVER-PRESSURIZATION ... 8
 3.1 Ion Exchange Column Pressure ... 8

4 REFERENCES ... 8
Introduction:

The PFP facility currently has approximately 4300 liters of plutonium nitrate solution in storage. This material will be calcined by the Vertical Denitration Calciner (VDC) located in room 230C. However, part of the material needs to be purified to remove constituents that will interfere with the calcination process. An Ion Exchange process using Reillex™ HPQ anion exchange resin was tested by the Plutonium Process Support Laboratories (PPSL) (1). The Ion exchange process is to be installed in glovebox HC-7 in room 228A/234-5Z. The plutonium separated from the interfering constituents will be in a concentrated condition ready to be calcined by the VDC in room 230C. The oxide product of the VDC will be placed into the 2736-Z vaults for long term storage.

The VDC calcination process is not covered by this basis document.

The following specifications set the limits necessary for protection of personnel, environmental safety, minimizing equipment damage, product quality, and maintaining process efficiency.

1 FEED SPECIFICATIONS

1.1 Feed Acid Concentration

Limit:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Specification Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>H⁺ ion concentration</td>
<td>7 to 8 M</td>
</tr>
</tbody>
</table>

Basis: (Efficiency, Safety)

Laboratory testing (1) of anion exchange resins have shown that the maximum resin loading is accomplished at about the 7 to 8 M nitrate ion concentration. No other source of acid of any consequence will be found in the feed solutions, therefore, the acid concentration will be used to ensure that the nitrate ion concentration is in the correct range. All feed to the ion exchange column (RMC filtrate, PRF Wash, and PUREX plutonium nitrate solutions) will have nitric acid concentration adjusted to be compatible with the ion exchange resin used (Reillex™ HPQ anion exchange resin).

Ion exchange resins used in the past for Pu purification are organic material that are very susceptible to degradation by nitric acid. Under extreme conditions of high nitric acid concentrations and high plutonium nitrate loading of the ion exchange resin the stability of the ion exchange column can be jeopardized if the
temperature is allowed to rise to the ignition point of the resin. This problem led to the accident at the 233S building at the REDOX facility(2). Another accident was at PFP in 242Z caused by long term exposure of the ion exchange resin in the column to nitric acid in conjunction with high loading of the ion exchange resins which resulted in the explosion of the ion exchange column with resultant personnel injury.

The Reillex™ HPQ® anion exchange resin has been shown to be much more stable and resistant to degradation by the nitric acid and radiological attack by the material being loaded on the resin than the former resins commonly used to purify plutonium. It has been subjected to boiling concentrated nitric acid for long periods with negligible damage(3). Engineering evaluation and laboratory testing have been done to define acceptable plutonium feed solutions.

1.2 Cycle Plutonium Loading

Limit:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Specification Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plutonium Loading</td>
<td>< 1600 grams Pu per cycle.</td>
</tr>
</tbody>
</table>

Basis: (Efficiency)

The Reillex™ HPQ® anion exchange resin process was shown in PPSL tests to load about 70 to 90 grams of plutonium per liter of resin (1). The ion exchange column has a volume of about 33 liters of resin.

70 grams/liter x 33 liters = 2310 grams
90 grams/liter x 33 liters = 2970 grams

The capacity of the IX column is in the range of 2.3 to 3.0 kg. The 1600 grams of plutonium is well within the capacity range of the resin. A margin under the 2.3 kg limit is desirable to prevent Pu loss to the raffinate. Excess Pu in the raffinate requires recycle or adds unnecessarily to the tank farm Pu loading. With operation experience the loading per cycle may be increased as directed by Process Engineering to increase operation efficiency.
1.3 Ion Exchange Column Wash

Limit:

Variable Specification Limit
Wash Volume < 40 L

Basis: (Efficiency)

The 40 liters of wash effectively moves the residual feed column volume (about 33 liters) out of the resin bed. Other plutonium ion exchange processes used at other sites use larger wash volumes to achieve greater purity of the plutonium which is not necessary for successful VDC operation at PFP.

Limit:

Variable Specification Limit
Nitric acid concentration 7.5 +/- .5 M

Basis: (Efficiency)

7.5 M Nitric Acid is used to wash the column to ensure that the plutonium remains on the column while the impurities from the feed are flushed on through the column.

1.4 Ion Exchange Column Elution

Limit:

Variable Specification Limit
H⁺ ion concentration 0.4 - 0.5 M nitric acid will be used to elute IX column

Basis: (Efficiency)

0.5 M Nitric Acid will reduce the concentration of nitrate ions in solution to the level that the Plutonium ions will no longer be able to form the hexanitrato complex of Pu(NO₃)₆²⁻ which is required for the plutonium to be adsorbed on an anion exchange resin. The cation Pu⁴⁺ is rejected from the resin as the elution fluid strips away the nitrate ions present in the hexanitrato complex which leaves the resin loaded with nitrate ions instead of the hexanitrato complex.
Limit:

Variable

Specification Limit

Elution Volume

83 liters

Basis: (Efficiency)

Laboratory testing has determined that column eluate volume of about 2.5 bed volumes are required to elute 95 percent of the plutonium nitrate loaded on the column.

0.5 bed volumes \times 33 liters/bed volume = 17 liters

2.0 bed volumes \times 33 liters/bed volume = 66 liters

To increase product concentration with operation experience as a guide, about the first 0.5 bed volume displaced by the elution process will be collected with the wash for recycle to the IX column. To increase product concentration the elution process will be discontinued after 83 liters before the concentration in the eluate tails off. An example of the effect on Pu product concentration follows:

3 bed volumes \times 33 liters/bed volume = 100 liters

0.98 \times 1600 grams Pu / 100 liters = 15 grams Pu / liter product

0.5 bed volumes to recycle \times 33 liters/bed volume = 17 liters

2 bed volumes product eluate collected \times 33 liters = 66 liters

Stopping elution at 2.5 bed volumes leaves ~ 5% of Pu on IX column.

0.95 \times 1600 grams Pu / 66 liters = 23 grams Pu / liter product

Limit:

Variable

Specification Limit

ERAT heel

7.5 +/- 0.5 liters of 12 M nitric acid

Basis: (Criticality Specification)

Eluant Receipt and Adjustment Tank (ERAT) will be pre-loaded with 12 M nitric acid to bring the nitric acid concentration of the 66 liters of Eluate to ~1.6 Molar.
66 liters of eluate at 0.5 M = 33 moles of nitric acid.

1.6 moles / liter x 66 liters = 105.6 moles of nitric acid.

105.6 - 33 = 72.6 moles additional acid required.

1.6 moles/liter (66 + x) liters = 0.5 moles/liter(66 liters) + 12 moles/liter(x liters)

\[x = \frac{(105.6 - 33)}{(12 - 1.6)} = 6.98 \text{ liters of 12 M nitric acid heel} \]

The final nitric acid concentration of 1.6 M is high enough to have a cushion above the Criticality Specification minimum concentration of 1.3 M (required to prevent Pu polymer formation) but will minimize the extra acid that the VDC off gas scrubber will be required to neutralize.

2 PRODUCT SPECIFICATIONS

2.1 Eluate Requirement Product Quality

Limit:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Specification Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>H⁺ ion concentration</td>
<td>~1.6 M nitric acid</td>
</tr>
</tbody>
</table>

Basis: (Criticality Specifications, Efficiency)

The eluate will be loaded into the ERAT with a fresh 12M nitric acid heel to yield a solution with about 1.6 M nitric acid concentration to meet criticality specifications requiring 1.3 M nitric acid concentration. Efficient operation of the vertical calciner is facilitated by holding the nitric acid concentration down to minimize the acidic off gas needing neutralization in the scrubber.
3 ION EXCHANGE COLUMN OVER-PRESSURIZATION

3.1 Ion Exchange Column Pressure

Limit:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Specification Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion Exchange Column Pressure</td>
<td>≤ 40 psig</td>
</tr>
</tbody>
</table>

Basis: (Safety)

Rupture disks are installed at the top and the bottom of the ion exchange column. Each disk is set to rupture automatically when 40 psig is reached within the column. The rupture disks allow for the safe depressurization of the column in the event of resin gassing, column plugging, or mechanical equipment failure occurs. The rupture disks will release the pressurized gasses, liquids and resin on to the glovebox floor and prevent the ion exchange column from rupturing and causing any containment damage.

4 References

1 Sutter, C. S., Internal Letter #15FOO-96-032, "Summary Reports of the Solution Stabilization Testing Preformed In Support of 94-1 Program Activities", Attachment 4, April 1996

5 Reilly Industries Inc., Technical Information, Reillex™ HPQ, Indianapolis IN
DISTRIBUTION SHEET

To Distribution
From PFP Process Engineering
Page 1 of 1
Date April 21, 1997

Project Title/Work Order
Basis Document for PFP Plutonium Nitrate Ion Exchange Process in Room 228A

<table>
<thead>
<tr>
<th>Name</th>
<th>MSIN</th>
<th>Text With All Attach.</th>
<th>Text Only</th>
<th>Attach. / Appendix Only</th>
<th>EDT/E CN Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. A. Compton</td>
<td>T5-12</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. F. Durnil</td>
<td>T5-55</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. W. Gibson</td>
<td>T5-55</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. A. Jones</td>
<td>T5-12</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. R. Risenmay</td>
<td>T5-55</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. M. Stubbs</td>
<td>T5-55</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. S. Sutter</td>
<td>T5-12</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. R. Wittman</td>
<td>T5-55</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>