The relationship between neutron multiplication and k{sub eff}

PDF Version Also Available for Download.

Description

In recent years the International Criticality Safety Benchmark Evaluation Project under the sponsorship of the Department of Energy has undertaken the task of evaluating past critical experiments. Many of the experiments involving metals were subcritical with extrapolation to some critical characteristic dimension. The metal experiments were commonly limited to a maximum multiplication of 100 for obvious safety considerations. Also many critical experiments often used subcritical measurements to obtain the critical specifications, e.g. Jezebel used subcritical measurements to assess the magnitude of neutron reflection from the surrounding structures. Therefore, the task of evaluating the experimentally derived critical configuration often involves evaluating ... continued below

Physical Description

10 p.

Creation Information

Brewer, R. W. September 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In recent years the International Criticality Safety Benchmark Evaluation Project under the sponsorship of the Department of Energy has undertaken the task of evaluating past critical experiments. Many of the experiments involving metals were subcritical with extrapolation to some critical characteristic dimension. The metal experiments were commonly limited to a maximum multiplication of 100 for obvious safety considerations. Also many critical experiments often used subcritical measurements to obtain the critical specifications, e.g. Jezebel used subcritical measurements to assess the magnitude of neutron reflection from the surrounding structures. Therefore, the task of evaluating the experimentally derived critical configuration often involves evaluating the subcritical measurements made by the experimentalist. The purpose of past experiments was to determine critical configurations. Many of the modem computer codes (KENO, MCNP, and ONEDANT) calculate values of k{sub eff}. However, the subcritical measurements made during the course of the experiment are usually measurements of the neutron multiplication. To evaluate the subcritical experiments, a link was established between the neutronic theory and the practical application of such when using subcritical measurements to establish the critical characteristic dimension. A more in depth derivation of the relationship between k{sub eff} and neutron multiplication will be shown along with comparisons between calculated and measured multiplications.

Physical Description

10 p.

Notes

INIS; OSTI as DE95016869

Source

  • 5. international conference on nuclear criticality safety, Albuquerque, NM (United States), 17-22 Sep 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95016869
  • Report No.: LA-UR--95-2127
  • Report No.: CONF-9509100--19
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 105100
  • Archival Resource Key: ark:/67531/metadc623235

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Feb. 1, 2016, 9:14 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Brewer, R. W. The relationship between neutron multiplication and k{sub eff}, article, September 1995; New Mexico. (digital.library.unt.edu/ark:/67531/metadc623235/: accessed December 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.