Particle Transport and Energization Associated with Disturbed Magnetospheric Events

PDF Version Also Available for Download.

Description

Energetic particle flux enhancement events observed by satellites during strongly disturbed events in the magnetosphere (e.g., substorms, storm sudden commencements, etc.) are studied by considering interaction of particles with Earthward propagating electromagnetic pulses of westward electric field and consistent magnetic field of localized radial and azimuthal extent in a background magnetic field. The energetic particle flux enhancement is mainly due to the betatron acceleration process: particles are swept by the Earthward propagating electric field pulses via the EXB drift toward the Earth to higher magnetic field locations and are energized because of magnetic moment conservation. The most energized particles are ... continued below

Physical Description

627 Kilobytes pages

Creation Information

Cheng, C.Z.; Johnson, J.R. & Zaharia, S. November 1, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Energetic particle flux enhancement events observed by satellites during strongly disturbed events in the magnetosphere (e.g., substorms, storm sudden commencements, etc.) are studied by considering interaction of particles with Earthward propagating electromagnetic pulses of westward electric field and consistent magnetic field of localized radial and azimuthal extent in a background magnetic field. The energetic particle flux enhancement is mainly due to the betatron acceleration process: particles are swept by the Earthward propagating electric field pulses via the EXB drift toward the Earth to higher magnetic field locations and are energized because of magnetic moment conservation. The most energized particles are those which stay in the pulse for the longest time and are swept the longest radial distance toward the Earth. Assuming a constant propagating velocity of the pulse we obtain analytical solutions of particle orbits. We examine substorm energetic particle injection by computing the particle flux and comparing with geosynchronous satellite observations. Our results show that for pulse parameters leading to consistency with observed flux values, the bulk of the injected particles arrive from distances less than 9 R(subscript E), which is closer to the Earth than the values obtained by the previous model and is also closer to the distances obtained by the injection boundary model.

Physical Description

627 Kilobytes pages

Notes

OSTI as DE00014681

Source

  • Other Information: PBD: 1 Nov 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PPPL-3388
  • Grant Number: AC02-76CH03073
  • DOI: 10.2172/14681 | External Link
  • Office of Scientific & Technical Information Report Number: 14681
  • Archival Resource Key: ark:/67531/metadc623231

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 15, 2016, 10:06 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Cheng, C.Z.; Johnson, J.R. & Zaharia, S. Particle Transport and Energization Associated with Disturbed Magnetospheric Events, report, November 1, 1999; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc623231/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.