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Implicit Particle-in-Cell (DADIPIC) Method 

Abstract 
r 

This dissertation describes a new algorithm for simulating low frequency, kinetic 
phenomena in plasmas. DArwin Direct Implicit Particle-in-Cell (DADIPIC), as its name 
implies, is a combination of the Darwin and direct implicit methods. One of the difficulties 
in simulating plasmas lies in the enormous disparity between the fundamental scale lengths 
of a plasma and the scale lengths of the phenomena of interest. The objective is to create 
models which can ignore the fundamental constraints without eliminating relevant plasma 
properties. Over the past twenty years several PIC methods have been investigated for 
overcoming the constraints on explicit electrodynamic PIC. These models eliminate selected 
high frequency plasma phenomena while retaining kinetic phenomena at low frequency. 
This dissertation shows that the combination of Darwin and Direct Implicit allows them to 
operate better than they have been shown to operate in the past. 

Through the Darwin method the hyperbolic Maxwell’s equations are reformulated 
into a set of elliptic equations. Propagating light waves do not exist in the formulation so the 
Courant constraint on the time step is eliminated. The Direct Implicit method is applied 
only to the electrostatic field with the result that electrostatic plasma oscillations do not have 
to be resolved for stability. With the elimination of these constraints spatial and temporal 
discretization can be much larger than that possible with explicit, electrodynamic PIC. 

The code functions in a two dimensional Cartesian region and has been implemented with 
all components of the particle velocities, the Efield, and the B-field. Internal structures, 
conductors or dielectrics, may be placed in the simulation region, can be set at desired 
potentials, and driven with specified currents. 1 

The linear dispersion and other properties of the DADIPIC method are investi- 
gated in order to deduce guidelines for its use. Linear theory and simulations verifying the 
theory are used to generate the desired guidelines as well as show the utility of DADIPIC 
for a wide range of low frequency, electromagnetic phenomena. The separation of the fields 



iv 

has made the task of predicting algorithm behavior easier and produced a robust method 
without restrictive constraints. 

Finally, the code is used to simulate Inductively Coupled Plasmas similar to those 
used for plasma processing in the microelectronics industry. Collisionless heating in these 
low frequency systems is one of the important kinetic effects for which DADIPIC is well 

suited. Agreement with 1-D linear, analytic theory is shown. The utility of DADIPIC is 
shown in simulation results for 2-D and nonlinear effects which are not amenable to analytic 
solution. 
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Chapter 1 

Introduction 

In physics we have a wide range of uses for computers including the experimentalist 
who needs to store and tabulate data, the theorist who wants numerical solutions to complex 
analytic expressions, and the computationalist who performs numerical experiments. This 
thesis falls into the last category where the computer is used to simulate physical phenomena 
based on the discretized form of a mathematical model for the phenomena. Given these 
discrete equations, we apply numerical methods to solve them as part of a simulation scheme 
which mimics the physical system. Here the simulation scheme is in the form of an initial 
value-boundary value problem. The simulation "universe" is initialized in the computer with 
certain boundary conditions, and the discretized mathematical model is allowed to evolve 
the system for a specified time. As with analytic theory the relevance of computational 
results is constrained by the limitations in the mathematical model of the phenomena. 
Numerical simulation has the advantage of being able to model systems where nonlinear 
effects, geometric complexities, etc. prevent analytic solutions. The ability to measure any 
quantity in the system and to simplify systems can lead to physical insight unattainable 
through experiment. 

Because of finite computer resources, we are limited in either the scale (spatial 
and temporal) of our simulation or the completeness of our mathematical model. We try 
to include the relevant physical effects with the least computational cost. This dissertation 
describes a method developed to simulate plasma phenomena which have been hard or 

impossible to investigate in the past due to computer resource constraints. The thrust is on 
developing the mathematical model, implementing the model in a code, and characterizing 
the operation of the code. While care has been taken to find and adapt numerical algorithms 
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well suited for efficient and fast operation of the method, the objective of the dissertation has 
not been to remove every extraneous clock cycle from each operation. The developed code 
has proven to be more than efficient enough to study the phenomena of interest. Further 
investigation of the method could be used for fine tuning of the numerical algorithms. 
The objective has also not been to simulate a single phenomena with all of its particular 
characteristics. The method is designed to simulate a wide range of phenomena. Routines 
to include the unique features of certain phenomena could be added for future studies of 
particular cases. 

Specifically, a new algorithm, the DArwin Direct Implicit Particle-in-Cell (DADIPIC) 
method, has been developed to simulate kinetic, low frequency phenomena in plasmas. This 

algorithm, which combines the features of Direct Implicit PIC[lan83] with the Streamline 
Darwin Field method[hew87a], provides a flexible, robust alternative to implicit, fully elec- 
tromagnetic field models. DADIPIC is implemented in a code which functions in a two 
dimensional x, z region with all three components of the particle velocities, the electric 
field, and the magnetic field. Internal structures in the simulation region may be conduc- 
tors or dielectrics, can be set at desired potentials, and driven with specified currents. 

Before delving into the specifics of DADPIC, a review of particle simulation of 
plasmas will provide a basis for discussion of the differences, advantages, and limitations of 
the new algorithm compared to other plasma simulation methods. A plasma is a collection 
of charged particles dense enough to exhibit group behavior; thus, we have the many body 
problem with electromagnetic force fields. The particles obey the equations of motion 

m 

To attack the many body problem we turn to statistical mechanics and kinetic 
theory. In kinetic theory we consider distribution functions which give the number density 
or probability density, fa, for particles of species CY in phase space (the combination of con- 
figuration and velocity space). The mathematical model needed for the plasma distribution 
depends on the nature of the plasma. While the plasmas of interest to us are dense enough 
to exhibit collective effects, they are not so dense as to cause correlations between particles. 
The long range forces due to groups of particles are larger than any effects from nearby 

particles. The exception to this is binary collisions where two particles approach each other 
very closely. However, in these plasmas the time spent in a collision is extremely short 
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compared to the time between collisions. This dows us to use the Boltzmann equation for 
the change in the distribution with time[kra86]. 

where the distribution function is the single particle distribution function. If the collision 

term on the right hand side of Eq. (1.2) is dropped, we have the Vlasov equation[kra86]. 
The force, F, in Eq. (1.2) is an averaged force which does not take into account correlations 
between particles. For plasmas the force is provided by the electric and magnetic fields 
which themselves obey a set of partial differential equations, Maxwell’s equations, 

V - B = O .  4n 1 dE V X B  = -J + -- 
C c a t  

The source terms, p and J, are the charge density and current density. 
We can work with Eq. (1.2) as it is, or we can get a further reduced description 

by taking velocity moments of this equation to get the fluid equations. The fluid equations 
describe the change in time of macroscopic fluid quantities (usually density, velocity, and 
internal energy). 

In many cases the plasma phenomena described by these equations involves non- 
linear effects and requires boundaries which are not amenable to analytic solutions. For 
this reason computers have been used to simulate plasmas according to the various de- 
scriptions mentioned above. Codes based on the fluid description are faster, but kinetic 
descriptions are usually needed for correct results given non-Mamvellian distributions and 

interpenetrating flows. Of course, fluid codes cannot be used to simulate strictly kinetic 
phenomena. Particle-in-Cell (PIC) simulation has proven to be a successful way of kineti- 
cally modeling the particle distribution function by using a number of simulation particles. 
Each particle has its own position, x, and velocity, v, which change according to  the forces 
on the particles due to electromagnetic fields. Particles are loaded into a simulation by 
sampling a distribution function for the desired initial state of the plasma. The plasma and 
field quantities are then followed in time. It has been shown that plasma behavior can be 
reproduced even though the number of simulation particles is orders of magnitude fewer 
than the number of particles in the actual plasma[bir85]. The objective of these models is to 

mimic the collective particle behavior without the need to correctly follow the trajectories 
of the individual particles composing the plasma. 
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The forces on the particles could be found by summing up the interparticle forces 
on each particle, but this would involve N2 operations per time step. A quicker method is 

to store field quantities on a grid and then interpolate them to the particle positions[hoc65], 
[yu65]. The grid also designates cells in which the particles reside. Particle quantities 
(charge density, p, and current density, J) are interpolated to the grid points and are used 
as sources in the field equations. The interpolation effectively gives the particles a finite 
size. So particles and fields are smoothed out reducing the statistical noise due to using a 
relatively small number of simulation particles[bir85]. Note that we now have particles in 
cells thus justifying the name PIC codes. 

The averaged fields on a grid are also in keeping with the Vlasov equation and its 
averaged force. Since the Vlasov equation has the form of the dynamics of a single particle 
subject to a force field, we can treat the simulation particles as a system of noninteracting 
particles under the action of the averaged force field[lib90]. Particles simply obey the single 
particle equations of motion (1.1). These equations of motion are finite differenced and 
used to update particle positions and velocities. The field quantities, E and B, are stored 
on the grid and are advanced according to finite difference versions of Maxwell’s equations. 

The typical time cycle has the following four steps: 1) find the particle forces by 
interpolating the fields from the grid to the particles, 2) integrate the particle equations of 

motion, 3) find the field sources by interpolating the particle quantities to the grid, and 
4) integrate the field equations. The main differences between PIC codes come down to 
methods of integrating the particle equations of motion, methods of solving for the fields, 
interpolation of particle and field quantities, and boundary conditions. The differences are 
driven by the plasma properties resulting from the particular applications of interest to 
the investigator. In the remainder of this section the explicit, fully electrodynamic PIC 
algorithm will be outlined as a basis for concepts used in the development of the DArwin 
Direct Implicit PIC algorithm. Constraints on the explicit method which are overcome by 
DADIPIC will be presented. Finally, the motivation for constructing a new method, the 
need .for low frequency, kinetic plasma simulation along with the limitations of previous 
methods, will be presented. 



5 

1.1 Explicit Electrodynamic PIC 

The most straight forward and the computationally quickest individual time step 

involves the explicit finite difference formulation of the equations (1.1) and (1.3). We now 
have a way to carry out the time advance of the particles and fields in steps 2) and 4) of the 
time cycle. With this explicit formulation we retain all of the electromagnetic and kinetic 
behavior of the plasma. However, as with any finite difference advance of a hyperbolic set 
of equations, constraints on the spatial and temporal discretization are needed in order to 
avoid numerical instability. 

1.1.1 Algorithm 

Many sources outline the following widely used second order accurate scheme for 
fully electrodynamic PIC[bir85]. The particle quantities and fields are time advanced with 
a leap-frog‘scheme. The particle positions and the electric field are stored at integer times, 
the particle velocities are stored at half-integer times, and the magnetic field is stored at 
both. 

n-112 Start with E?, Bj”, x?, and Bj 
Loop over particles 

1) Interpolate ET, Bj” to particle i 
2) Push particle i 

n+1/2 + v;-1/2 
vi x By] 

m 2c 

3) Interpolate x?+l, vi n+1/2 to the grid to get pyfl, JY+’12 
4) Integrate the field equations 

In these equations the i subscripts refer to quantities at the particle locations, 
and the j subscripts refer to quantities at the grid node locations. The interpolation from 
particles to the grid and vice versa is accomplished through shape functions. The effects of 
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these functions on the simulation have been extensively studied[lan70],[oku72], [bir85]. The 
form of the function is S ( X j  - xi)  where X j  is a grid node coordinate and X i  is a particle 
position. For this dissertation linear shape functions will be used with the form 

for - AX < x j  - xi < 0 and - AZ < Zj - ~i < 0. Otherwise 

S ( x j  - x i )  = 0- (1-7) 

Equation (1.6) is for a particle in the cell located in the positive x and z direction with 
respect to the grid node. The other nodes of a cell have similar functions. The sources, for 
the field equations on the grid, are obtained by sums over the particles in a particular cell 

of the appropriate particle quantity multiplied by the shape function. As an example the 
charge density is defined to be 

Since p and J on the grid are interpolated from particle quantities, they need not 
satisfy the continuity equation 

/j+ V -  J = 0. 

Thus even if Gauss’s Law is initially satisfied, deviation &om the continuity equation can 
lead to errors in the electrostatic part of the Efield. A widely used correction to the field 
has the form[bir85] 

where 

(1.10) 

(1.11) 

Notice that equation (1.4) is implicit with respect to the velocity. This equation 
can be reformulated with the Boris algorithm so that the advanced velocity is exclusively 
on the left hand side[bor70]. Using tensor notation the equation becomes 

where I is the identity tensor and R, the rotation due to v x B, is given by 

w = [( I - 2 0 p x I + 2 0 p 0 )  

0: = qBpAt/2mc. 

(1.12) 

(1.13) 
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1.1.2 Constraints 

We can do a von Neumann stability analysis of the hyperbolic system of equations 
(1.4) and (1.5)[roa76]. Considering fields of the form E,exp[i(k.x - wt)], exponential 
(numerical) growth of the fields will not occur as long as w has an imaginary part which 
is less than or equal to zero. Substituting into the finite difference equations, we find as 

in[bir85] 

QB = CKXE 

S1E = -CKXB 

where 

tcX = kx sin(kZA~c/2)/(kxA~/2) 

tcZ = kz sin(kzAz/2)/(kzAz/2) 

S2 = w sin(wAt/2)/(wAt/2). 

Eliminating E and B from equation (1.14), we find 

sin(wAt/2) sin(kzAz/2)] [ sin(kzAz/2)] [ c a t  ] '=[ Ax + aZ, 
w is real for all k if 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

This Courant condition imposes a limit on At for a given spatial discretization. Physically 
it corresponds to limiting the propagation of light to less than one cell in a time step. 
For low frequency phenomena where the time for light propagation across the system is 

insignificant compared to the time for changes in the system, this constraint would require 
an unnecessarily small time step. The Darwin formulation of Maxwell's equations will be 
used to overcome this constraint. 

The particle equations of motion also impose a time constraint. This analysis will 
be taken up more rigorously in chapter 3; however, a simplified calculation is presented 
here to show the magnitude of this constraint. Consider a plasma with a uniform back- 
ground density of ions and a one dimensional perturbation in the electron density. The 
electrons will oscillate electrostatically in a longitudinal standing wave at the plasma fre- 
quency, wie = 4rne2/me[che74]. For a zero temperature plasma the density (thus the 
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particles) will oscillate harmonically at W p e .  Analyzing equation (1.4) for a simple harmonic 
oscillator, where qE/m = -Upex, we find 

,,,-W(t+At) - 2x e-Wt + zoe-iw(t-At) - - - ( A t ) 2 w z e x , e - W t .  (1.18) 

The resulting dispersion relation is 

sin2(wAt/2) = ( ~ p e A t / 2 ) ~  (1.19) 

leading to the stability requirement wp,At < 2. If high frequency plasma oscillations are 
not important for the phenomena of interest, this constraint is very restrictive. The Direct 
Implicit method is used to overcome this constraint. Note that this constraint is applicable 
to any explicit code (full Maxwell or Darwin). In fact in high density plasmas the WPe 

constraint would force the Darwin time step to be almost as small as the Courant limited 
time step. Under these circumstances the full Maxwell algorithm would be more efficient 

since it requires less computer time per simulation time step. 

1.2 Low Frequency, Kinetic Phenomena 

One of the difficulties in simulating plasmas lies in the enormous disparity between 
the fundamental scale lengths of a plasma and the scale lengths of the phenomena of interest. 
The fundamental parameters involve the Debye length, A g e  = K B T ~ / ~ T T Z ~ ~ ,  the plasma 
frequency, W p e ,  and the propagation time of electromagnetic waves. The Debye length is 
the distance over which a test charge placed in a plasma will be shielded. It is near the lower 
limit of scale lengths for collective effects, and systems are usually many Debye lengths in 
size. Reduced physics models such as fluid algorithms would allow the computationalist 
to ignore the constraints imposed by these fundamental parameters, but in many cases 
the kinetic properties of the plasma are intimately involved in the transport of energy and 
particles. The explicit, electrodynamic PIC of the previous section would correctly model 
all of the physics in the plasma, but the discretization in space and time required due to 
the constraints on the algorithm would be prohibitive. The problems would demand more 
storage and speed than present computers can provide. 

The objective is to create models which can ignore the fundamental constraints 
without eliminating relevant plasma properties. Properties to retain include: kinetic effects 
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such as collisionless damping of low &equency waves and nonanalytic particle velocity dis- 
tributions, electrostatic as well as magnetoinductive fields, finite electron mass effects, and 

nonlinear processes. 
Two examples of low frequency, kinetic phenomena are magnetic reconnection and 

plasma processing. Magnetic reconnection is, as its name implies, the connection of mag- 
netic field lines in resistive media. This process itself exists over a wide range of spatial and 
temporal scale lengths in astrophysical, geophysical, and magnetic fusion plasmas[hew88]. 
It is considered important in the transport processes of these plasmas and can depend on 
the ion and electron velocity distributions. Fluid descriptions of the phenomena require em- 
pirical additions to the equations which are not consistent with the known properties of the 
plasmas. Kinetic simulations remain the best vehicle for studying magnetic reconnection, 
even though it may occur over widths of 10s of Debye lengths and times equal to 1000~;~. 

Plasma processing is an important application of plasmas where boundaries need 
to be considered. Plasma processing involves the use of plasmas in the treatment of 

material surfaces for microelectronic and other industries[hop92]. The plasmas are used 
to clean surfaces, deposit materials on surfaces, and etch surfaces. There are various 
ways of generating the plasma. Among these are inductive reactors which excite the 
plasma with inductive fields operating a frequency, w,f,  near 10 MHz with sufficient power 

to generate plasma densities of np = 1011 ~ m - ~ .  Typical sizes of these reactors are 
L = 10 cm. This results in parameters of L > Ax = -1 cm >> AD, = -005 cm and 
c/Az = 3 x > wPe = 2 x 10 s- >> urf. Since electron collisions are a main source 
of ionization and other chemical reactions in the chamber, the electron velocity distribution 
has a major impact on the reactor operation. Because the inductive fields muse heating 
through both resistive and collisionless processes, the distribution need not be Mamvellian. 

10 1 

1.3 Long Time Scale Simulation Methods 

Over the past twenty years several PIC methods have been developed to overcome 
the constraints .on explicit electrodynamic PIC. These methods eliminate selected high 
frequency plasma phenomena while retaining long time-scale, kinetic phenomena. The 
approaches can be split into two broad categories according to the way they remove the 
high frequency, short wavelength phenomena. The first category starts with the original 
set of equations and reduces the physics. The set of equations is no longer hyperbolic for 
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certain types of waves (usually light waves and plasma oscillations). The second category 

works with the finite difference equations in an implicit form. All of the waves still exist in 
the implicit simulation, but those which are not resolved are numerically damped out. 

1.3.1 Physics Reduction Methods 

The Darwin method is the minimum reduction in Maxwell’s equations necessary 

to eliminate the propagation of light waves[dar20], [nie76]. The essence of this radiation free 
limit is obtained by ignoring the solenoidal part of the displacement current in Ampere’s 
law. This results in a particle Lagrangian which is correct to order v2/c?. The set of Darwin 
equations can be rewritten in elliptic form. Chapter 3 will elaborate on the form of the 
equations and their numerical solution. 

Significant progress has been made in the numerical implementation of Darwin 

for PIC codes. The initial Darwin algorithms decomposed the plasma source terms into 
an irrotational, or curl free, part and a solenoidal, or divergence free, part in order to 
solve the partial differential equation for the B-field and solenoidal Efield[nie76]. This pro- 
cess was both numerically time consuming and conceptually daunting. In many cases the 
boundary conditions needed to solve for the irrotational and solenoidal parts of the plasma 
source terms are beyond the physical insight of the investigator. The derivation of the 
Streamlined Darwin Field (SDF) equations by Hewett and Boyd removed the need for a 
decomposition and reformulated the equation with variables which require relatively simple 
boundary conditions[hew87a]. However, SDF consists of two strongly coupled partial dif- 
ferential equations. The linear system due to the finite differencing of these equations was 
found to be difficult to solve. This problem was overcome with the extension‘ of the itera- 
tive matrix solution technique Dynamic Alternating Direction Implicit (DADI) to coupled 
equations [hew92a]. 

With these improvements the Darwin equations can be solved quickly and effi- 
ciently in a plasma simulation code. The method eliminates the CFL constraint on light 
propagation while retaining all kinetic effects for the particles in the radiation free fields. 
The Darwin field equations reduce the size of electromagnetic fluctuations compared to fully 
electromagnetic codes[nie76]. This allows the use of fewer particles resulting in a further 
increase in computational speed beyond the use of a larger time step. Unfortunately, for 

higher density plasmas the constraint due to uPe can be almost as restrictive as the Courant 
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condition. 
In quasi-neutral or hybrid codes the Debye length is assumed to be negligible ev- 

erywhere so the electron density is approximately equal to the ion density. This assumption 
leads to a modification of the electrostatic field calculation and the electron dynamics. The 
exact form of the modified charge density continuity equation leads to either a zero electron 
mass, actually inertia, (ZEM) formulation or a finite electron mass (FEM) formulation. 
Since in either case the total charge density and its time derivative are approximately zero 
everywhere, the continuity equation sets the divergence of the current density equal to zero 
or 

(1.20) 

There can be no high frequency plasma oscillations since the electrons, which must be 
specified as a fluid, are moving with the ions. The slow moving ions are treated explicitly 
as particles or fluid. 

In ZEM codes the lack of electron inertia means that the electrons instantly fol- 

low the motion of the ions, and they are useful in cases where electron dynamics can be 
ignored[sgr76], [bye78], [hew80]. The continuity equation result is taken to mean JZTT = 

-JfZ. So after the explicit advance of the ions both J& and Jim are known. An equation 
for the Efield is found by neglecting the inertia terms in the electron momentum equation. 

(1.21) 
VpTe Ue X B  E=---- + q -  J 

eP C 

where Te is the electron temperature, 21, is the electron drift, q is the resistivity, and J is 
the total current density. This equation is substituted into Faraday's law to give a time 

advance for the B-field 

(1.22) 

The new solenoidal part of the current density is found from Ampere's law in which the 
solenoidal displacement current has been neglected 

J:;' = (c/47r)S7 x Bn+l (1.23) 

Finally, the %field equation is used with all of the advanced quantities to find the new 
Efield. 
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FEM codes solve for a scalar function such that[hew78] 

V2$ = V Ji 

which coupled with the quasi-neutral continuity equation (1.20) results in 

(1.24) 

(1.25) 

Je is then advanced with an explicit electron momentum equation in which the actual J;,.,, 
is removed and replaced with -09. Again the electrons have been tied to the ion time 
scale. An ambipolar electrostatic field still exists through a quasi-neutral “Poisson” equation 
obtained from the continuity equation and the sum of the electron and ion momentum 

equations[hew78], [dip94b]. With all of the above source terms advanced to the new time 

step, the new Esol and B can be found from the Darwin field equations[dip94b], [hew94]. 
With these hybrid codes both the Courant and wPe constraints have been elim- 

inated. Since the electrons are now a fluid, the number of particles has been reduced 

improving storage and cpu time. Ion kinetic effects have been retained, but electron kinetic 

effects are completely absent as  are short range electrostatic fields. 

1.3.2 Implicit Methods 

Implicit methods achieve stability by including information from the next time step 
in the equations for the time advance of present quantities. Contributions from previous 
time steps may also be retained depending on the amount of numerical dispersion which 
is desired or tolerable. If all quantities are stored on the grid and the dynamic equations 
depend on the local values of grid quantities, the implicit system can be formulated into 
a set of simultaneous equations. The solution of the simultaneous equations gives the grid 
quantities at the next time step. 

For PIC simulation the situation is more complicated. The particles have positions 
and velocities independent of the grid, and the field equations can be elliptic requiring global 

solutions much more involved than a simple relationship to local grid quantities. For this 
reason the methods used are actually predictor-corrector. The source terms (usually p and 
J) are found at an intermediate level using thk present field values. Equations for the time 
advanced fields are derived by expanding the field equations around the arguments at the 
intermediate level[lan85]. llluncating the expansion gives approximate equations for the 
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time advanced fields in terms of the present fields and the intermediate level sources. The 
particles are then pushed to the next time step by using the time advanced fields. The 

estimated fields are not necessarily consistent with final particle positions and velocities. 
In principle iterations over the above steps could be done to improve convergence, but this 

has not been found to be necessary[lan85]. If one did iterate to convergence, the methods 
would be truly implicit. The two approaches to implicit PIC, the moment method and the 
direct method, differ primarily in how the source terms are advanced to the intermediate 
level. 

In the moment method the source terms to be advanced are the fluid quantities 
which have been interpolated to the grid from the particles. The moment or fluid equations 
are used to give the time variation of these quantities, and the terms in the fluid equations 
are found from additional accumulations of particle quantities. The fluid quantities are then 
advanced to the intermediate time level through a finite difference of the time derivatives 
where the numerical accuracy of advection schemes can play a role. Initial work with 

electrostatic codes can be found in Mason[mas81] and Denavit[den81]. Overviews of moment 
method electromagnetic algorithms are in Brackbill and Forslund[bra85] and Mason[mas85]. 

The direct method avoids the inconsistencies of taking moments by continuing to 
work directly with the particles. Both the particle positions and velocities are moved to the 
intermediate level. The particle quantities are then interpolated to the grid to provide the 
source terms for the implicit field equations. This leads to a double push and interpolation 
of the particle quantities. Since dealing with the particles can take most of the cpu time, 
a computational cost is paid for the greater accuracy of the direct method. Dispersion 
characteristics and grid effects have been thoroughly investigated in several sources[lan83], 
[coh84]. An overview of the method including electromagnetics and energy conservation 
characteristics can be found in Langdon and Barnes[lan85]. Hewett and Langdon[hew87b] 
and Tanaka [tan931 provide results from fully electromagnetic implicit codes. 

These implicit methods provide plasma simulation with large temporal and spatial 
discretization while retaining electron kinetics. The strength of the implicit scheme is that 
those phenomena which are not resolved are numerically damped. This becomes a constraint 
when the numerical dispersion cooling effects and grid heating effects cause significant 
numerical changes in total system energy. Energy conservation is achieved only if Ax 

and At are chosen correctly[hew87b], [coh89]. The other limitation to these methods has 
been finding reasonable boundary conditions for the implicit electromagnetic fields. 
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1.3.3 The DArwin Direct Implicit (DADIPIC) Method 

As its name suggests DADIPIC is a combination of the Darwin and direct implicit 
methods. The direct implicit algorithm is only applied to the electrostatic part of the 
Efield. The SDF equations are used to solve for the solenoidal Efield and the B-field. 
The particles are advanced explicitly in time with respect to the solenoidal Efield and the 

B-field. As will be shown in the remainder of this dissertation, DADIPIC combines the 

previously mentioned useful features of these two methods while eliminating or at least 
mitigating previous shortcomings. Darwin is no longer limited by w,,At because of the 
electrostatic direct implicit particle advance. Boundary conditions are much simpler since 
they are applied separately to the implicit electrostatic field and the SDF equations. The 
issue of energy nonconservation also appears to be manageable since fluctuations due to the 
electrostatic field appear to be the only culprits. 

1.4 Overview of Chapters 

In the remainder of this dissertation the DADIPIC algorithm is presented along 
with tests of its performance and applications to idealized plasma processing reactors. Chap- 
ter 2 contains the details of the algorithm. The equations for advancing particle quantities 
and for solving the fields are presented. The necessary boundary conditions for the field 
equations are derived, the finite difference forms of the field equations are shown, and the 
numerical methods for solving the resulting linear systems of equations are presented. The 

next two chapters characterize DADIPIC and give guidelines for accurate and stable simu- 

lation using the method. Chapter 3 covers analytic theory which predicts the behavior of 
DADIPIC as At and Ax are varied while Chapter 4 shows the actual performance of the 
method in 2-D both as verification of theory and proof of robustness under stressful circum- 
stances. The final section of Chapter 4 condenses the guidelines into a region of operation 
for DADIPIC simulation. Chapter 5 has the results of the application of DADIPIC simu- 
lation to the phenomenon of collisionless heating in inductively coupled plasma processing 
reactors. After the applicability of the method is verified by agreement between simulation 

and 1-D analytic theory, DADIPIC is then used to simulate reactor geometries in 2-D. 
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Chapter 2 

Implementation of DArwin Direct 
Implicit Part icle-in-Cell 

The implementation of DADIPIC results in an algorithm in which the implicit 
electrostatic step and the Darwin step each stand alone. So each step will be described' 

separately before presenting the combined algorithm. 

2.1 Direct Implicit Electrostatic Method 

In this section the particle advance and field solve necessary to ca.rry out the 
implicit electrostatic part of the DADIPIC algorithm are described. 

2.1.1 Particle Integration 

The particles are time integrated according to the D1 implicit schemepan831. This 
scheme damps high frequency oscillations while retaining low frequency oscillations by keep- 
ing significant contributions from all previous time steps in the electrostatic part of the 
particle acceleration. The D1 scheme also extends the region of energy conservation in 
Az/Ao,, w,,At space as compared to the more time centered C1 scheme[coh89]. In fact 
good energy conservation was found when Sv,hAt/Aa: N 1. The finite differenced equations 
take the form 
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where Esol is the solenoidal part of the field, and E i T T  is the irrotational part of the field. 
Notice that includes the time advanced electrostatic field. Unlike other electromagnetic 
implicit algorithms, the particle push is still explicit with respect to Esol and B. So a time 
advanced field solution is required only for E+- This particle push is broken up into two 
steps[hew87b]. The fist  push uses only known quantities to advance v and x to a N level, 
and the A, quantities are used to estimate the advanced E c T .  The predicted E i T T  is then 
used to complete the advance to the n+l time step. As mentioned above the method is a 
predictor-corrector as opposed to truly implicit. 

Using the notation of Eq. (1.13), we obtain 

x = xn+AtV 

The find positions and velocities are obtained from 

Note that R should be evaluated at xn, and E i T T  should be evaluated at xn+l for 6v. With 
this scheme bv cannot be found until the advanced E i T T  is computed. An approximate field 
equation is obtained by taking the first two terms of a Taylor expansion of the accumulated 
charge density at time n+l about 2. 

Noting the first term is p ,  Eq. (2.4) can be rewritten 

In the second term the gradient can be changed to a derivative on the grid position and 
removed from the sum. Several methods of calculating the remaining s u m  have been 
investigated[coh84], [lan85]. Calculation of the sum in Eq. (2.5) with the actual field 
interpolation to the particles in 6v and the weighting of the particles to the grid is called 
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strict differencing[lan85]. One of the least computationally intensive and most stable calcu- 

lations of the sum has been termed simplified dif€erencing[lan83]. In simplified differencing 
R and the Efield are evaluated on the grid leaving 

X = -c(I+Rn)[-] At2 qsp”5- 
4 s  mS 

where the sum is now over species. The X tensor is easily formed from the B-field and 
charge density already stored on the grid. This differencing provides a signiscant reduction 
in computation since it avoids extra interpolation of particle quantities to the grid and leads 
to a simpler finite difference field solution. For instance in l-D the field solution goes from 
a pentadiagonal solution matrix with strict differencing to a tridiagonal solution matrix 
with simplified differencing. With the simplified differencing expression for pn+l the field 
equation becomes 

v (I + 47rX) * vp+l = -47rp” (2.7) [ 1 
Because of the similarity of this equation to the electrostatic field equation in dielectric 
media, the X term is usually refered to as an implicit susceptibility [lan83]. 

2.1.2 Differencing of the Field Equation and Boundary Conditions 

Simplified differencing is implemented in the code as follows. In the x-z plane the 

implicit field equation has the form 

v,(X~zv, + xzzvz) + V,(XZ2V, + XZZVZ) 

These terms are finite differenced with second order accuracy as 

v,(Xz”vz4”+1) = - 1 b:1/2,j4;z:j + ~~?1/2,j4i-l,j n+l 
(W2 
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Table 2.1: Coefficients for the Implicit Field Equation Operator 

4i,j-1 czm 

4i-i,j+i dmp 

with the other terms having similar expressions. This leads to a nine point scheme of 
coefficients in the solution matrix, A, for each potential node to be solved. The result- 

ing coefficients are in table 2.1. A is formed with 4( i7 j )  ordered in a 1-D vector as 

[41,1, ...,4iima,~,41,2, ...,4im,2, ...I. A is a banded matrix, and to save on storage only 
the diagonals with nonzero components are stored by the code. Note that the components 

of the X tensor are needed at the half grid point positions. The offset is in x for X"" and 
Xzz, and in z for Xzz and X z z .  These are calculated by averaging the densities and B-fields 
which are stored at the grid points. As an example X(i - 1/2,j) generates its rotation 
tensor from the B-field: B(i - 1/2,j) = .5(B(i - 1,j)  + B(i, j)) .  

Periodic, Dirichlet and Neumann boundary conditions on 4 are allowed by the 
code. Periodic boundaries represent an infinite repetition of the simulation region along 
the periodic direction. Essentially there is no boundary only a limitation on maximum 
wavelength. For periodic boundaries, nodes outside one of the four periodic walls of the 
simulation region are the same as nodes just inside the opposite wall. This moves the 
coefficient for that node to a different diagonal in the solution matrix. As a result the 
number of diagonals changes for periodic boundary conditions (15 for periodic, 21 for doubly 
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periodic). The resulting matrix is also nonsymmetric. Consider a doubly periodic simulation 

with an m x n grid; therefore, a m x n solution matrix, A. The Al,mn term in the matrix 
is given by the dmm coefficient (see Table 2.1) for the 1,l node in the simulation grid or 

dmm(1,l) = - (2.11) 

The L n , 1  term in the matrix is given by the dpp coefficient for the m,n node in the 
simulation grid or 

(2.12) 

Given that X’s at different nodes are not necessarily equal, it follows that Al,mn # Amn,l, 
or the matrix is nonsymmetric. 

For Dirichlet nodes such as a conductor with a specific potential, the coefficient 
on the diagonal is set to one, the other coefficients are set to zero, and the right hand side 
is set to the value of 4 desired for that node. For Neumann nodes exterior nodes required 
by the finite difference template are found from interior nodes according to 

4iinaz+l,j = 4imaz-1,j + AX- 84 
dX 

(2.13) 

The exterior node coefficient is simply added to the interior node coefficient, and the deriva- 
tive term is added to the right hand side of the matrix equation. This condition is most 

commonly used along axes of symmetry where @/ax is set to zero. 
Once 4 is calculated, the electric field must be found. For interior points the 

gradient of 4 is used 

Conducting boundaries present a unique situation. Under long time scale con- 
ditions a confined plasma will generally rise to a positive potential with respect to the 
confining walls. This potential drop retards the more mobile electrons and accelerates the 

heavier ions caus’ing an equalization of the electron and ion currents being absorbed by the 
walls. The resulting potential sheath is typically large compared to a Debye length, but may 
be small compared to the region to be simulated. This leads us to use different boundary 
conditions at conducting boundaries depending on whether a sheath is spatially resolved or 

not. 
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When the sheath is resolved an implicit Gauss' law is used to overcome the lack 
of 4 values exterior to the conducting boundary[vah93]. The integral form of the implicit 
field equation is 

1 (I + 47rX)E. A d s  = 47r I PdV + 47r I O d S  (2.15) 

where CT is the surface charge density on the conductor. Consider a conducting wall with 
surface normal in the positive x direction and a boundary node at i j  with a Gaussian box 
around it located at half grid points as in Fig. 2.1. The integral on the left hand side of 

Eq. (2.15) can be split over the four surfaces. Assuming the variables are constant over a 
surface and are equal to the value of the variables at the center of the surface, the integrals 
are easily evaluated. 

i ( I +  4nX)E (-2)dydz = 0 

L(I + 47rX)E ( 3)dzdy = [47rXZzEZ + (1 + 47rXzZ)E"]i,j+l/2AzAy 

A(I + 4nX)E ( 2)dydz = [(1+ 4nXzz)Ez + ~ T X " ~ E ~ ] ~ + ~ / ~ , ~ A ~ A ~  

i ( I +  47rX)E - (-3)dzdy = -[47rXZzEz + (1 + 47rXzz)EZ]i,j-1,2AzAy (2.16) 

Inside the conducting wall the field is zero so the integral over surface one is zero. Fields 
tangent to the equipotential surface are also zero. Finally at the surface Etj = 47rra so 

4n ads = ECjAyAz (2.17) I 
Putting all this into Eq. (2.15), the result for the surface field is 

Similar expressions are found for walls with surface normals -2, 3, and -2. 
When a sheath is not resolved and w,,At is large, Eq. (2.18) is dominated by Xzz. 

This results in a large, nonphysical electric field at the conducting surface. Since a sheath 
is not resolved, the field at the boundary fluctuates due to the simulation particle noise. 
This is the same as the fluctuating electrostatic fields in the bulk of the plasma, but the 
anomalously large magnitude of the boundary field causes excessive numerical heating of the 
plasma. To get realistic fields a sheath boundary condition must be applied which imposes 
the normal Efield. The field must be set according to the potential drop calculated from 
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an analytic or numerical sheath model. Such sheath boundary conditions are the subject 
of ongoing investigations[dip94c]. Most of the results presented in this dissertation use a 
relatively simple sheath model. The ions are represented as a uniform, stationary positive 
background. The potential drop of the sheath is represented by a boundary condition on 
the particles as well as the field. An infinite potential drop in the sheath is implemented 
by specularly reflecting all of the particles at conducting walls. Since the potential drop is 
already represented by particle reflection the Efield is set to zero at the walls. The result 
is that the particles remain in the simulation region instead of being absorbed, and they 
are not heated due to anomalously large fluctuating fields at the walls. In chapter 5 a 
more complex sheath model is explained and used for the simulation of a typical plasma 
processing reactor. 

2.1.3 Numerical Solution of the Field Equation 
Given the nine-point stencil for the difference equation and the large, sparse, non- 

diagonally dominant matrix, the bi-conjugate gradient (BCG) method was chosen to solve 
the implicit electrostatic equation. As will be shown in section 2.2, the remaining field equa- 
tions rely on five-point stencils and can be solved more efficiently with Dynamic ADI. The 
BCG method is a variation of the conjugate gradient method applicable to nonsymmetric 
matrices. The conjugate gradient method is an iterative minimization of the functional 
$(x )  = .5xTAx - xTb[go189]. At the minimum V$ = Ax - b = 0, so we have solved the 
matrix equation Ax = b. Given an approximate solution, xk-1 ,  at the k-1 iteration, the 
new solution is x k  = %&l+ a k p k  where p k  depends on k - 1 quantities. The ak are chosen 
so that $ ( Z k - l +  a k p k )  is minimized with respect to a, and the p k  are chosen to be linearly 
independent. The residual is r k  = b - k?& = rk -1  - Q k A p k .  Since the x k  are the sum of 
the P k ,  Xk E span@l, ... ,pn} .  The result is each x k  solves 

(2.19) 

A solution is found after n iterations for a n dimensional space since spun{pl, ... , p n }  
includes the whole space. In the BCG method two residual and two conjugate vectors are 
defined[fle75]. It is equivalent to solving the system A T h  = ATb so the scheme is working 
with a symmetric matrix. The method is not guaranteed to converge. For those cases where 
it does converge, the method is guaranteed to converge in n iterations for an n dimensional 
space. In practice a useful solution can usually be obtained in far fewer than n iterations. 
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The conjugate gradient method converges rapidly for well conditioned matrices. 
Preconditioning transforms Ax = b into a well conditioned system through an incomplete 
LU decomposition of the matrix A. The sparsity pattern of A is used in determining which 
terms in L and U are calculated thus minimizing the computations required to perform the 
decomposition. From Anderson, et. al.[andSS] the preconditioned system is Mu = C where 
M = L-'AU-', u = Ux, and C = L-lb.  The BCG algorithm is 

end 
The optimized preconditioned bi-conjugate gradient routine CPDES2[and88] was 

used for nonperiodic and periodic simulations, and a separate BCG routine was written 
for doubly periodic problems. Convergence is reached when lZk - Zk+11/1Zkl and ITk+lI/lbl 
are both less than a given error criterion. None of the simulations run thus far have had 

problems with convergence. Before using the routines in simulations; however, tests were 
run to ensure they correctly derived the matrix coefficients for all boundary conditions and 
converged to the correct solution for 4. The tests were accomplished by comparing the 
solution from the bi-conjugate gradient routine to the solution of Poisson's equation from 
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an already tested iterative linear system solution routine based on dynamic ADI. Dynamic 

AD1 will be further discussed in the Darwin method sections to follow. The test algorithm 
proceeds as follows: 

1) Set arrays for the potential, psi(ij), and the implicit susceptibility tensor, 
X ( i , j ) ,  from the analytic functions 

(2.20) 

(2.21) 

The functional form for the susceptibility tensor is based on its density dependence (a 
nonnegative spatially varying quantity). The value at a grid node for each component of 
the tensor is offset by the proper half-grid amount. The solution region is set as in Fig. 2.2a 
with Neumann boundary points along the left boundary, periodic points along the upper 
and lower boundaries, and Dirichlet points along the right boundary and a rectangular 
structure inside the region. The potential is set to zero on all Dirichlet points. 

2) Calculate the right hand side, rhs(ij), of the equation using the given psi(ij) 

and X(i,j) with the finite difference form of the implicit field equation 

rhs(i,j) = V[(I + X(i7j))Vpsi(i7j)]. (2.22) 

3) Call the routines to set up and solve the linear system with the given boundary 
conditions. The bi-conjugate gradient routine places the solution into the array phin(ij). 

4) Calculate a second right hand side from the finite difference form of Poisson’s 
equation and use the DAD1 routine to h d  phi(ij). Given that the same boundary condi- 
tions and finite difference schemes are used, phin(ij) and phi(ij) should be the same. 

Figure 2.3a is a contour plot of the calculated phin(ij) while Fig. 2.3b is a measure 
of the difference from phi(ij). The points in Fig. 2.3b were calculated by taking phin(i, j) - 
phi(i, j) and dividing by the average value of phin(ij)’over the whole grid. As shown by the 
figure the differences are quite small, - lo-’, which indicates agreement between the two 

methods. CPDES2 took 32 iterations to meet the error criteria of for a 41x41 grid. 
Tests were also carried out with variations between the X tensor component magnitudes, 
different numbers of grid points in the two directions, and no periodic boundaries with 
similar positive results. 
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2.2 Darwin Method 

2.2.1 Field Equations 

The Darwin limit of Maxwell’s equations is obtained by dropping the solenoidal 
part of the displacement current [nie76] to obtain 

(2.23) 

Using the charge continuity equation, Eirr is replaced with -4nJiTr and rewrite Ampere’s 
law as 

(2.24) 4n V x B = -Jsol. 
C 

Consider E and B in terms of the potentials 4 and A in the Coulomb gauge (V A = 0). 

B = V X A  

(2.25) 

Using these potentials in the Darwin field equations gives the following equations for the 
fields. For the electrostatic potential the result is the usual Poisson’s equation 

V24 = -4np. (2.26) 

This equation was modified in section 2.1 to allow an implicit particle advance with respect 

to the electrostatic field. As shown below, the time advanced Eirr can then be used along 
with the time advanced particle quantities to construct a source term for the Esol equation. 
In a 2-D code two forms are used to solve for the B-field in order to ensure that V-B = 0 and 
V - A = 0. For the component of B which is out of the simulation plane, the y component, 
the curl of Ampere’s law gives 

4n V2By = --(V x J)y. 
C 

(2.27) 

Since there is no variation of quantities in the y direction, this component of B cannot 
contribute to the divergence of B. The second equation is obtained by replacing B in 

Ampere’s law with its vector potential form. This gives 

4n V2Ay = -- Jsol,y. 
C 

(2.28) 
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Again with no variation in y, Ay and Jy are automatically solenoidal. Finally Ampere's law 
and Faraday's law are combined to give 

(2.29) 

in 

47r 
V2Esoz = Z J S O I .  

Now the fist velocity moment of the Boltzmann equation, summed over species, gives 
terms of present particle quantities 

47r --j = ~Esoz+ PEim + x B + K 
C2 

= P E ~ ~ z  + Q (2.30) 

where 

K =  (2.31) 

Putting Eq. (2.30) in terms of a direct accumulation of the particle quantities par921 
produces 

This solution is implemented since the use of a finite difference of B or j leads to a problem 
size limit of less than 27rc/wp in order to prevent instability[nie76]. We now have a set of 
elliptic equations (2.24)' (2.26)' and (2.29) that generates instantaneous fields given the 
time advanced particle source terms. 

The effect of the Darwin approximation is evident in the change of the solution to 
the vector potential form of Ampere's law. The fully electrodynamic form is 

1 d2A 47r 
c2 at2 C 

- - Jsoz V2A - -- = (2.33) 

with solution 

(2.34) 

If the partial derivative with respect to time is dropped in Eq. (2.33)' the solution becomes 

(2.35) 

It is obvious that retardation effects due to the finite propagation time of light have been 
eliminated. In vacuum light waves no longer exist. 
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2.2.2 Streamlined Darwin Field (SDF) Formulation 

Eq. (2.29) presents some difficulties in finding its solution. A computationally 
intensive vector decomposition of j is required to find its solenoidal part, and this can only 
be done if boundary conditions can be specified for the decomposition. In many applications 
boundary conditions on the irrotational part of j cannot be determined. Early applications 
generally considered problems where boundaries were distant from the plasma. A uniform 

plasma with doubly periodic boundaries is an example of this kind of simulation. Even in 
this case a slow iterative process must be used to solve Eq. (2.29) since Esol appears in 
jsol which is on the right hand side of the equation. First an expression for j must be 
generated, decomposed, and used as the right hand side for Eq. (2.29). After solving Eq. 

(2.29) for Esol, the process is repeated until convergence. 
Hewett and Boyd derived the Streamlined Darwin Field (SDF) formulation to 

avoid both boundary condition and vector decomposition problems[hew87a]. They defined 
new field quantities as follows 

47r - 
C2 

-V2(V$) E - J i T T  (2.36) 

u E =  - Esol-V$. (2.37) 

Recalling the form of the Esol field equation 
47r 

V2Eso1 = Q + ~ E s o l -  7 J i T T ,  (2.38) 

two coupled partial differential equations axe found in terms of E and $ 

(2.39) 

(2.40) 

Many of the previous problems in solving Esol have now been eliminated. A vector decom- 
position of Q is no longer required so nonintuitive boundary conditions do not have to be 
determined. Eq. (2.40) ensures that the solution for Esol is in fact solenoidal. As we shall 
see in the next section, boundary conditions on E and $ are straight forward and depend 
on the boundary conditions for Esol. 

2.2.3 Boundary Conditions on A,, By, and Esol 

As with the electrostatic potential, the SDF field solution routines in the code 
allow periodic, Dirichlet, and Neumann boundary conditions for A,, By, and Esot. While 
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periodic and symmetric boundaries require the same conditions for all fields as described in 
section 2.1, conducting surfaces impose conditions which must be applied separately for the 
different field components. Since the B-field has no divergence and is zero inside a perfect 
conductor, the normal component of the field is zero on the surface of the conductor. To 
meet this condition A, must be a constant along the surface of a conductor. Thus we have 

a Dirichlet zero boundary condition on 4. 
Considering E on a perfectly conducting surface, Ampere’s law and Gauss’ law 

result in Et = 0 and En = 4na on the surface where t is for tangential and n is for normal. 
= 0. Since V.E,,l= 0, this implies &E$ = 0. 

Given that Esol = 0 inside the conductor, we have Egz = 0 on the surface. The surface 
charge must be accounted for by Ei,, so @ = 4no. Thus Gauss’ law is still satisfied by 
-V$. This leaves us with Esol = 0 on conductors. 

0 along the boundary implies 

Boundary conditions on E and $ are needed which will enforce the above condition 
while still maintaining V Esol = 0. This is done with the following set of equations: 
1) For nonboundary and Neumann points, solve the SDF equations (2.39) and (2.40). For 
Neumann zero points, require an$ = 0 and 8,s = 0. 
2) For conductor interiors set 

- - - V $  c- $ = O .  (2.41) 

This gives a simple Dirichlet boundary condition on $ while maintaining Esol = 0. The 
divergence of Esol remains zero since Esol is constant everywhere inside the conductor. 

3) For conductor surfaces set 

(2.42) 

This ensures that s + V+ is zero and solenoidal at the surface of the conductor. Since 
E = -V+ applies only inside and on the surface of the conductor, the derivative of the 

equation may be discontinuous as the interface is crossed. So the divergence cleaning relation 
must be explicitly enforced on the surface. 
4) Driven conductors can be treated in two ways. The fist option is as Dirichlet points 
where Esol is specified. The second is as nonboundary points where the driven current 
density $(’I is added to the appropriate component of Q in each of the nodes inclusive to 
the conductor. Since this is an imposed current density not dependent upon what occurs in 
the simulation, we simply define this current density to be whatever we want. Given that 
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we may choose not to resolve the skin depth of the conductor with our grid, the current 

density is set to get the correct total current given the size of the conductor. This still leads 
to reasonably correct fields outside the conductor. 

2.2.4 Numerical Solution of the SDF Equations 

Dynamic Alternating Direction Implicit (DADI) is the method used to find so- 
lutions to the system of finite difference equations resulting from SDF. As shown below, 
the technique is optimized for use with a five-point finite difference stencil of the Laplacian 
operator. DADI is an iterative, operator-splitting technique where a fictitious time step is 
added to the equation to be solved. 

-- - a@ - L11, at (2.43) 

where L is the operator resulting from the finite difference form of the original equations. 
For a discussion of the basic technique see Press, et. al.[pre89]. A solution to Lq5 = 0 is 
found by iterating Eq. (2.43) to the time-asymptotic state. The idea is to split the operator 
into pieces which can be easily solved implicitly and to take several steps to advance + from 
fictitious time step n to n+l. For L split into L1, L2, ..., Lm we have 

where w = 2/St. The splitting can be chosen to ensure convergence of the method[hew92a]. 
The subtlety comes in choosing w each time step to maximize the rate at which the time 
asymptotic state is approached or, equivalently, the rate of convergence. The method used 
here is due to Doss and Miller as applied to the Laplacian operator[dos79]. For this case 
consider a single splitting into the horizontal, H, and vertical, V, parts of the Laplacian 
operator 

(2.45) 
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where 

(2.46) 

Each time step a HV pass is made using w to get $:+l. After this $n is operated on twice 
(HV, HV) using 2w or half the time step to get $?+l. The L2 norm of the difference between 

$nS1 1 and $?+' is divided by the L2 norm of the difference between $?+' and $,". This 
ratio determines a multiplicative factor used to change w for the next time step. For a large 
ratio the time step is reduced, and for a small ratio the time step is increased. The idea is 
that a large numerator indicates unresolved behavior which could lead to instability. If the 
denominator is too large, the time step is too small for fast convergence. Given the form of 
the operator a simple tridiagonal solution is all that is necessary for each H or V pass. This 
method is used for the B-field and vector potential, Eqs. (2.27) and (2.28), respectively. 

Larson and Doss[hew92a] is used. The horizontal and vertical passes in this case become 
For the SDF equations Coupled Equation DAD1 (CEDADI) as discussed by Hewett, 

where 

(2.48) 
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The factor f can be set for different degrees of implicitness for the pE term in the Dynamic 
AD1 iteration. Notice that all of the first-order derivative terms are lagged (evaluated with 
nth iteration values). This allows the continued use of a tridiagonal solution for the implicit 

terms. The CEDADI method has been shown to be considerably faster than bi-conjugate 
gradient for this set of equations. The convergence criteria is for the largest d u e  of I La I 
on the grid divided by the average value of is less than a given error test. Here Qr represents 
$ and all components of z. 

As with the implicit electrostatic field equation, the CEDADI routine was tested 
to ensure that the conductor and other boundary conditions were implemented properly. 
The test region is the same as that shown in Fig. 2.3. The following steps are taken to 
define an initial Egol and self consistent Q. CEDADI is then used to solve for Esol which is 
compared to the original. 

1) Define an array q5(i,j) from the function 

f$(z, 2) = ezp(-z2/L2)sin(kzz). (2.49) 

Set 4 to zero on conductors and one node outside conductors. 
2) Calculate 

So EZol has no divergence, and it is zero on conductors. The calculated E:ol(i,j) is shown 
in Fig. 2.4a. 

3) Calculate 

4) Calculate 

5) Calculate 

where 

p(z, 2) = p0(sin(2k&c) + 2 - cos(2kzz)) (2.54) 
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,u(i,j) is shown in Fig. 2.4b. 
6) Use CEDADI to solve for E: and $, and then find Esol. 
7) Calculate the error from Esoz - E:oz. 
With a po of one CEDADI takes 81 iterations to converge to an error criteria of 

on the 41x41 grid. Figure 2.5a is a vector plot of the calculated 9, and Fig. 2.5b is a 
contour plot of $. The difference between the original and calculated Esol is shown in Fig. 
2.5~. The error here is more a function of the finite difference operators especially the V$ 
operation, then any error due to the convergence criterion of the CEDADI scheme. In fact 
while V2$(i,j) - V .E( i , j )  is small (- V.Esoz(i,j) is signiScantly larger (- .05 for 
this example). 

2.3 Dielectrics 

For many problems of interest dielectric as well as conducting structures axe 
needed. Since fields penetrate through dielectrics, one cannot simply treat them as sur- 
faces with boundary conditions which ignore the interior. For dielectrics Ampere’s law in 

the Darwin limit becomes 
4~ 1 dD+T 
c c a t  

V x B = -J+ --. (2.55) 

Here D is the electric diplacement which is defined as 

D = (1 + 4xXd)E (2.56) 

where Xd is the dielectric susceptibility. Notice that in the plasma where Xd is zero, the 

equations are the same as in the previous section. So the accuracy for the particle La- 
grangian remains the same. 

In the dielectric region Gauss’ law 

V - D  = 4 ~ p  (2.57) 

and the charge continuity equation are used to replace Dirr with -4nJirT. Again Ampere’s 
law can be written as Eq. (2.24). The result is that the equations for Esol and B are 
unchanged. All the solutions of the previous section still apply. This is not the case for 
the electrostatic field equation where Gauss’ law in terms of the components of the Efield 
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becomes 

v - (1 + 4TXd)v4 - v * (47fXdEsol) = -4Tp. (2.58) 

Solving for the electrostatic potential including the direct implicit susceptibility, XI,‘ the 
new electrostatic field equation becomes 

[ 1 

(I + ~ T X I *  +4~Xd)V4~+’  = -47~6 + ~ T V  (XdEsol) 1 (2.59) 

This equation introduces a possible stability problem since the electrostatic and 
electromagnetic field equations allow an explicit connection between Erol and E:;’ during a 
time step. This should only be a problem in regions where dense plasma and dielectric meet. 
In the plasma Xd is zero so the connection through the electrostatic equation is removed. In 
regions of dielectric and vacuum the pEirr term is absent from Q as defined by Eq. (2.30). 
It does not contribute to the SDF Eq. (2.39); therefore, there is no contribution to Esol. 
Since in the future plasma/wall interfaces will be treated with analytic sheath boundary 

conditions, the potential region of instability will be eliminated from the simulation. As 
a second option for those cases where Esol makes little contribution to Eq. (2.59), the 
EFOl - VXd term could be removed while retaining most of the contribution of Xd. This is 
true for situations in which Esol is driven in the direction perpendicular to the simulation 
plane, and the only contributions to Esol in the plane are plasma fluctuations. 

2.4 DADIPIC Algorithm and GYMNOS 

The field solutions of sections 2.1 and 2.2 can now be integrated into a combined 
algorithm for the time advance of particle and field quantities. The result is a time cycle 
of two sets of the four steps mentioned in chapter 1. Given initial values of En, Bn, e, 
vi , and q-’, the cycle proceeds as follows. 
I. Advance to - level 

n-112 

1) Interpolate 
2) Push particles to Gi and jti using Eq. (2.2). 
3) Interpolate the ?i and ki to the grid finding /?j and Xj. 
4) Solve the implicit electrostatic field Eq. (2.59) to find E;:,;. 

la) Interpolate E:.,: and Bj” to particles 

and Bj” to particles. 

11. Advance to n+1 level 
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2a) Push particles to vrt1'2 and xrtl using Eq. (2.3) and evaluating 
6v at 2. Save qn. 
lb) Interpolate E;:,:, E:oz,j, and Bj" to the particles. 
2b) Find from 

(2.60) 

3) Interpolate the v,+' and x;+' to the grid finding JYfl, $I, and KY+'. 
4) Solve the B-field and SDF Eqs. (2.27), (2.28), (2.39), and (2.40) to 
find BY+' and E:$,;. 
Since the solution of the electrostatic and SDF fields are separated in this al- 

gorithm, there is a certain flexibility with respect to the method used for the implicit 
electrostatic particle advance. For this work the D1 direct implicit scheme has been chosen, 
but other direct implicit schemes or the moment implicit method could be substituted with 

little change to the overall algorithm. 

Note that steps l), 2), and 3) are inside a loop over all the particles. The steps 
are completed for one particle before the next particle is considered. Each particle adds its 
contribution individually to the grid source terms in step 3). Also vn+l is not stored for 
each particle. The advance of onehalf a time step is needed to find Jn+l and Kn+l. Only 
the second order accurate, leapfrogged vnS1l2 passes through to the next time cycle. 

This algorithm has been incorporated into an already existing 2.5-D PIC code 
developed by Hewett called GYMNOS[hew92b]. This magnetostatic code based on elliptic 
solution algorithms using DAD1 is an excellent framework for the DADIPIC algorithm. The 
code is written in R-Z geometry and has the ability to generate its own internal structures. 
Both structure and field quantities are stored on cell corners. Particles may be perfectly 
reflected, fully absorbed, absorbed with a fraction thermally reemitted, field-emitted, or in- 
jected with a prescribed distribution. The particle pusher is a fully vectorized Boris pusher. 
Below is an overview of GYMNOS followed by the major changes made to implement 
DADIPIC. 

1) To begin the code sets physical constants, creates files, initializes graphics, and 
opens the input file with a call to the subroutine FIRST. 

2) The code reads the namelist NDATA which defines the simulation region, the 

time step, the simulation stop time, and diagnostic dump times. 
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3) The code calls subroutine INIT to initialize the run. In the nonperiodic case four 
bounding structures are set around the simulation region. Namelist GSETl is read to get 
position and imposed potential or current information for internal structures. The status of 
nodes in relation to structures is stored in the arrays SKEY, KEY, and KORNT. Elements 
in the arrays which correspond to cell centers or corners which are not in structures are 
designated by 0. SKEY indicates whether a cell center is inside a structure with -1., KEY 
designates nodes which are part of structures with -1, and KORNT indicates nodes which 
are on the surface of structures with several integer designators (depending on the surface 
orientation and whether it is flat or a corner). These arrays are needed in the field solve 
and particle trapping routines since the handling of nodes in the routines is controlled with 
integer switches. The arrays are set in the routine GEOMSET based on the information 
from GSET1. 

INIT next reads a namelist NECHSP for each particle species. This gives informa- 
tion on the initial plasma state along with the physical properties of structure surfaces with 
respect to particles. With this information INIT initializes the particles for each species 
and prepares for any required particle injection. 

4) Control returns to the MAIN routine and the time integration loop. Each time 
step the routine TFtANS is called to move, inject, and absorb particles. At the same time 
particle quantities are accumulated on the grid. A call is then made to FIELD to solve the 

field equations on the grid. Diagnostics axe also saved during the time step. 

5) After the last time step MAIN closes all files with a call to ENDPLT and then 
terminates the run. 

For the implementation of DADIPIC, GYMNOS was converted to XZ geometry. 

This allowed the investigation of DADIPIC in a uniform doubly'periodic plasma where 
comparisons could be made to analytic kinetic theory for basic test cases. The main changes 
in going from cylindrical to Cartesian geometry occurred in the volume calculations for 
source accumulation, in the r,x components of the particle equations of motion, and in the 
r,x direction finite difference terms in the field equation solutions. The two parts of the 
time cycle in DADIPIC manifest themselves in the duplication of the routines called during 
a time step. TRANS1 and FIELD1 are called to do the particle advance to the - level and 
solve for the implicit electrostatic field. In TRANS1 the X tensor is found from the B-field, 
p ,  and the dielectric susceptibility on the grid. TRANS2 and FIELD2 are called to do the 
particle advance to the n+l level and solve for the B-field and solenoidal Efield. 
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The number of geometry arrays has been increased to allow different structure 
types. KEMM and KORNTIh4 are set based on all the structures in the simulation and 
are used to determine when particles cross structure boundaries. KEMMF and KORNTF 

are set according to grid points enclosed by conducting structures. Dielectric structures 

have KEYIMF=O and are not considered boundary nodes. The grid nodes do have an 
associated dielectric susceptibility stored in DIECHI which is set based on the locations 
of the dielectric structures. Before each field solve KEY and KOFLNT are set based on 
KEYIMF and KORNTF with any driven structures removed. The field routines use KEY 
and KORNTF to set the finite difference coefficients for each node. As an example consider 
a conducting structure which has a driven current density in the y direction. For the 
electrostatic field solution KEY=-1, and the structure would have Dirichlet nodes at some 
designated potential. For the Ag solution KEY=O, the structure is not a boundary region, 
and the structure nodes have some imposed current density added to any particle density 
at each point. 
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Figure 2.1: Position of the surfaces for a Gaussian box around a node at the surface of a 
conducting boundary. 
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Figure 2.2: Region for testing the numerical solution of the implicit electrostatic field equa- 
tion a) the boundary conditions b) the spatial variation of Xzz (s.255 and j=3.74). 
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Figure 2.3: Test results of the numerical solution to the implicit electrostatic field equation 
a) the potential calculated by the bi-conjugate gradient routine (a=-.90 and j=.90) and 
b) the difference between the bi-conjugate gradient and DAD1 solutions (a=-6.6e-10 and 
j=5.3e-10). 
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Figure 2.4 Results of the CEDADI test: a) the original Esol (longest vector=.809) and b) 
the spatial variation of p (a=.200 and j=3.80) 
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Figure 2.5: Results of the CEDADI test: a) vector plot of E (longest vector=1.19) b) contour 
plot of II, (a=-1.53 and j=1.53), and c) vector plot of EZol - Esol (longest vector=.0907) 
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Chapter 3 

Theory of DADIPIC Operation 

Given a method for low frequency, kinetic plasma simulation, its performance must 
be evaluated. In this chapter analytic theory is used to predict the behavior of DADIPIC 
giving guidance about conditions to be met for stable and accurate simulation. This gives 
a framework of understanding for choosing the test cases of Chapter 4. Those test cases are 
used to verify the theory in an actual 2-D code as well as provide information not obtainable 
from theory. , 

3.1 Effect of the Direct Implicit Method 

Several sources discuss the effect of finite spatial and temporal discretization on 
the direct method[lan85], [lan83], [coh84]. In this section we investigate the constraints to 
be met for accurate solution of the field equation, and then cover linear kinetic theory to 
predict the effect of electrostatic fluctuations which are not properly resolved. 

3.1.1 Accuracy of the Field Equation 

First we must consider whether Eq. (2.4) is a reasonable approximation of pnfl. 

For a h e a r  shape function it is exact as long as the particle remains within the cell in which 
it started or 

(I+R)E << 1 6vAt qAt2 -=- 
Ax 4mAx 

The evaluation of Eq. (2.4) at k further restricts the predictor term to only be accurate 
for R and E which have scale lengths long compared to At6v. Since the gridding limits 
the variation of these quantities, the constraint of Eq. (3.1) should be suflicient. For higher 

... 
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order shape functions the other terms in the expansion have been neglected, but again 
constraint (3.1) would cause these terms to be small. Under conditions where Eq. (3.1) is a 
valid expansion, an accurate solution can be expected from the electrostatic field equation 
with strict differencing. It remains necessary to determine the minimum density fluctuation 

scale lengths for which the simplified differencing of Eq. (2.6) agrees with strict differencing. 
Here large density fluctuations which change on long time scales shall be inves- 

tigated; thus, they are temporally resolved in simulations of low frequency phenomena. 
Low frequency behavior may be due to long scale lengths or externally imposed fields. Ac- 
ceptable scale lengths are estimated by comparing the difference between the second terms 
in the pn+l expansion. Consider a one dimensional magnetized system. For simplified 
differencing we have 

where 

S + ( X ~  - X )  

S - ( x j  - X )  

= ( X  - x ~ ) / A x  f o r  x j  < x < xj + AX 

( x j  - x ) / A x  f OT x j  - AX < x < x j  = 

(3.3) 

For strict differencing [coh84] 

In these terms only the electrons need to be included since the large mass of the ions makes 
their contribution small. Approximating the particles with a continuous density function, 
we can replace the sum over i with an integral over 2. Each shape function is multiplied by 
the density function, f i (x ) ,  and then integrated over the limits specified by Eq. (3.3). Given 
functions for f i  and 4 we can solve (3.2) and (3.4). The electron density, Q, ion density, nj, 
and potential, 4, are assumed to vary sinusoidally as 
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With small 6 the electron and ion densities are almost the same, and fields large enough 

to violate Eq. (3.1) are avoided. This linear form is a solution to Poisson's equation, and 
it is used to gauge the difference between simplified and strict differencing. Plugging the 
quantities of Eq. (3.5) into Eqs. (3.2) and (3.4), the simplified differencing term is 

1 [ c o s ( ~ ~ A x )  - 2 ~ 0 ~ ( 2 k A x )  - COS(LAZ) + 23 
1 

k A x  + - [ ~ i n ( 3 k A ~ )  - 3 s i n ( 3 k A ~ ) ]  

and the strict differencing term is 
StD = - 1 (-) qAt  2noq50 [yeos(kxi)(cos(2kAx) - 1) 

. 4 m  A x  

1 C O S ( ~ ~ Z ~ ) [ C O S ( ~ ~ A X )  - ~cos(~TCAX) - C O S ( ~ A X )  + 21 1 
( ~ A X ) ~  

- -  (3-7) 

Figure 3.1 shows lStD - SiDl/lStDl vs. 2 n / k A x  for y = 1. As one can see for 
wavelengths of 5 A x  or more simplified differencing agrees well with strict differencing. This 
is because the exact position of particles in a cell is relatively less important for modes with 
wavelengths of many cells. For smaller wavelengths the simplified differencing term becomes 

much larger than the strict differencing term. Larger terms on the left hand side of the field 

equation would force the potential to be smaller for a given charge density distribution. 
Such a reduction of the field would be stabilizing in cases where the field is large enough to 
violate Eq. (3.1) for small scale length variations. 

Finally, an estimate of the time step needed to resolve a phenomena with frequency 
w, can be found from a von Neumann stability analysis of the time-advance difference 
equations, assuming a time harmonic oscillation of only the electrostatic field [roa76]. A 
dispersion relation results for the normal modes at w dependent on the driven frequency 
w,. For the D1 implicit scheme the dispersion relation is [la11831 

( w , ~ t ) ~ z ~  + (22 - l)(z - 112 = o (3-8) 

. where z = exp(- iwt) .  1 1 ~ 1 1  for the least damped simpleharmonic oscillator mode shows 
large damping for large w,At; however, the damping is quite small for (LJ ,A~)~  less than 
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.05. Thus the constraints for resolving electrostatic phenomena are Eq. (3.1) and 

kAx 5 1 w,At 2 .2 (3.9) 

3.1.2 Linear Kinetic Theory 

While we meet the above constraints for resolving the low frequency phenomena 
that we are trying to simulate, we probably will not resolve the high frequency, electrostatic 
plasma oscillations which cause the unavoidable fluctuation background in the plasma. This 
section reviews the results of linear kinetic theory which have been applied to the discretized 
plasma of the PIC simulation. The expected results will be compared to test runs of the 
DADIPIC code in Chapter 4 to ensure its correct implementation. Most studies of the 
numerical dispersion effects of the implicit method have concentrated on the electrostatic 
field. Since the electromagnetic fluctuation fields are much smaller than the electrostatic 
fluctuations fields, the numerical effects of the EM fluctuation fields should also be relatively 
small. As will be shown in Chapter 4, this has proven to be the case. Despite the presence 
of B-fields which contribute to the X tensor, the electrostatic fluctuation fields appear to 
agree with electrostatic kinetic theory. The numerical heating/cooling is also similar to that 
repoeed in Cohen, et. al. [coh89] for a l-D electrostatic algorithm. 

In linear theory the plasma is assumed to have a small perturbation, fsl, of the 
plasma distribution around some plasma equilibrium, fSo. We must solve the first order 
Vlasov equation[kra86] 

and the field equations 

A solution is found by 

(for electrostatics just Poisson's equation) 

(3.10) 

(3.11) 
S J 

taking the Fourier transform with respect to the spatial variables 
and solving the resulting algebraic equations. The result is an equation D ( k ,  w)4 (k ,  w )  = 0 
where D is the dispersion function. The normal modes which can exist in the plasma are 
found for k and w which satisfy D ( k ,  w )  = 0.  For the electrostatic case we find [ha861 

(3.12) . 
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where L indicates integration over the Landau contour. In the equilibrium plasma the 
various normal modes (Langmuir waves, ion-acoustic waves, etc.) exist as fluctuations 
and are damped modes. A uniform plasma with a Maxwellian velocity distribution is in 

equilibrium and no net change in the particle total kinetic energy will occur. As we shall 

see, this is not the case for the PIC plasma. 

Dispersion Relations 

In deriving dispersion relations for the PIC plasma discrete Fourier transforms 
must be used for those quantities which are discrete in space and time. For a continuous 
quantity such as particle position, P(x), the Fourier transform is 

P(k)  = / 0 3  dx P ( x )  e-ikz 
-m 

For grid quantities 
03 

G(k)  =6z GjeikXj 

(3.13) 

(3.14) 

With these transforms the forms of source and field quantities can be found in 
Fourier space which are appropriate for Eq. (3.11). These quantities have been derived by 
Langdon in several sources[lan70], [lan79a], [lan79b] and only an abbreviated overview will 
be presented here. Investigations of the direct implicit method in particular are in [lan85], 
[lan83], [coh84]. First consider the spatial transforms[lan70]. Assuming the simulation par- 

ticle density is sufficient to approximate as a continuous qumtity, the density interpolated 
to the grid is 

72j(t) = J d X S ( X j  - z)n(x,  t )  

The Fourier transform of the grid quantity is 
03 

40) = ~(lcp>n(lcp> 
p=-03 

where ICp = IC - PICg and ICg = 27r/Ax. The force on a particle is given by 

F(k, t )  = -iqS(-k)Z(k)$(k, t)  

(3.15) 

(3.16) 

(3.17) 

where K is a function resulting from the finite difference form of the gradient operator. 
Again this is similar to the continuous case modified by the Fourier transform of the shape 
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function. The result for Poisson's equation is 

(3.18) 

where K is a function resulting from the finite difference form of the Laplacian operator. 
The time behavior was investigated by considering deflections of the electrons, dl), 

from zero-order orbits, do), caused by the fields [lan79a]. The deflection of a particle from 
a straight path is computed for an Efield of the form E(l)(x, t)  = Eezp[i(k x - w n A t ) ]  = 

Eeq[ik - x]P. Note that if w has a negative imaginary part then the field magnitude will 
exponentially increase with time. Using the finite difference equations for the advance of 
the particle positions and velocities, xi1) at time step n can be found as a summation over 
past accelerations. This gives us a function 

(3.19) 

which involves summations over z = eq(-iwAt). The exact form of the function depends 

on the particle integration scheme implemented (explicit, D1 implicit, etc.). As n goes to 
infinity the [X/A] take on limiting forms. 

Z [$] = (At)2(z  - 1 ) 2  
explicit 

Z 1 [3,, = ( A t ) 2 [ ( z - l ) 2  +-I (3.20) 

Now regard the result of the perturbed move to x(O) + as a superposition of monopoles 
q at x(O) and dipoles with q at do) + dl) and -q at x(O). The monopole density is cancelled 
by the neutralizing background, and the dipole polarization density is 

P(X, t )  = qn, J dvf,(v)x(l) (x, v, t )  

Since p ( l )  = -V - P, we can find the form of n ( k , w ) .  The result is 

qn(k ,w)  = -k - Z(k)S(-k)X(k, w)4(k,w) 

where the finite grid effects on the force of equation (3.17) have been included and 

(3.21) 

(3.22) 

(3.23) 
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Substituting this into equation (3.18) gives the dispersion relation 

(3.24) 

where kzp = IC, - 2~p/Ax.  Notice the similarity to equation (3.12). It can be found 
that as Ax and At go to zero equation (3.24) converges to the continuum result. It is 
this dispersion relation which indicates instability (Im(w) < 0) when wp,At > 1.62 for 
an explicit time integration and a Maxwellian velocity distribution. The implicit particle 
advance eliminates this constraint. The implicit case, however, requires (kvthAt)2 < 1 for 
correct Debye shielding[lan83]. This is a particle transit time effect similar to the restriction 
(3.1) since the maximum k equals n/Ax. 

Electrostatic Fluctuations 

Vlasov theory treats the plasma as a fluid in x-v phase space with a continuous 
distribution function. This was the assumption used above to calculate the dispersion 
function for the PIC plasma. However this theory cannot describe the field fluctuations 
in a plasma. For fluctuations the test-particle picture is used. In this picture each plasma 
particle leads a double life. It is a test particle moving in a Vlasov fluid, and it is also part of 
the Vlasov fluid participating in the shielding of charges. First the potential in a plasma due 
to a test charge is found, then fluctuations in densities, fields, and other properties which 
depend on particle discreteness are calculated by ensemble averaging over all particles. 

As shown by various sources, the potential due to a test charge is [kra86] 

The form for the PIC case is[lan79b] 

(3.25) 

(3.26) 

where pt(k,w) is the Fourier transform of the charge density for the test particle in either 

the continuous or PIC case. Given 9 we can find the value of other quantities. We can 
then find the average fluctuation level of some quantity g(k, w )  by taking the inverse Fourier 
transform and ensemble averaging 

(3.27) 
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A useful quantity to measure in the PIC plasma is the Efield energy density. In 
terms of the spectral density, W(k, w), it is 

(3.28) 

For the uniform, Maxwellian plasma with electrostatic fluctuations the spectral density is 

[kra861 

(3.29) 

For the PIC case [lan79b] 

where w, = w - 2nr/At. Note that the fluctuations for the PIC plasma are larger by the 
ratio of the actual particle number density7 no, to the simulation particle number density, np. 
As expected the fewer the number of simulation particles the larger the background noise in 
the simulation. In Chapter 4 these functions will be compared to the Fourier transform in 
space and time of the Efield measured in PIC simulations. The measured spectral density 

is found from 

(3.31) 

where T is the time interval of the simulation. 

Particle Kinetic Energy Change Due to Fluctuations 

The change in the total kinetic energy density of the plasma particle distribution 
is 

(3.32) 

The Fokker-Planck equation can be used to describe the change in the particle distribution 

function, af/at, for a plasma as long as individual collisions produce only small changes 
in the velocity of a particle. This is the case when fluctuation fields in the plasma are the 
cause of the velocity changes. 

For the continuum plasma a Maxwellian distribution is an equilibrium (ie. Eq. 
(3.32) gives zero). It has been known for some time and quantified with computations that 
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the uniform, Maxwellian PIC plasma does suffer a continuous change in energy [hoc7l]. 

For this reason explicit PIC codes are usually operated with W p e A t  and A X / A D e  less than 
.2. Langdon used the kinetic theory outlined above to find the terms in the Fokker-Planck 
equation to give an analytic form for the PIC plasma d < K E  > / d t  [lan79b]. The function 
is directly proportional to the number of actual particles per simulation particle, No/Np, 
and has arguments of Ax/AD and wpAt or 

(3.33) 

It was shown that explicit methods would cause only heating of the plasma while implicit 
methods could also cause cooling for some A x  and Atbir851. From Eq. (3.33) one can 
see that a set of simulations of uniform plasma at different Ax/XD and wpAt  with No/Np 
constant would give a contour plot of G. The energy change in any simulation could then be 
found from no and No/Np of that particular simulation. Again as will be shown in Chapter 

4, electromagnetic fluctuations do not have an appreciable effect since they are much smaller 
than the electrostatic fluctuations. The plot should also hold for nonuniform plasmas with 
electromagnetic phenomena other than fluctuations as long as the other phenomena are well 
resolved spatially and temporally. For these cases the main cause for numerical changes in 
energy should still be the electrostatic fluctuations in the densest plasma regions. 

3.1.3 Conditions for a Nonsingular Implicit Electrostatic Field Equation 
Matrix 

Because of the explicit advance with respect to the B-field, certain constraints on 
time step occur in relation to the electron gyrofrequency, w,. .The implicit electrostatic field 
equation must be considered since the rotation tensor depends on the B-field. A condition 
to ensure a nonsingular implicit field solution matrix is found from the theorem [nob77]: 

Let M and C be n x m matrices with M being nonsingular and let 11 - 11 denote 
any of the operator noms. If CY = IlM-lCll < 1 (or a = IICM-lI1 < 1) then M + C is 
nonsingular. 

The field matrix can be analyzed to find the constraint on At necessary for this 
condition to be met. In order to simplify the analysis without significant effects on the 
constraint, consider a uniform plasma with doubly periodic boundaries and with Bz and 

B, comparable. Assuming only small perturbations in the density, the X tensor and matrix 
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coefficients simplify to 

4 cc M --(1+XZ”) 
A2 (3.34) 

1 
A2 t p  M tm~cpcpcmcm--(l+Xxx) 

1 
4A2 cpp M cpm M cmp M cmm sz -(Xxz + Xzx). 

The variable 8 is the normalized B-field multiplied by At as defined in Eq. (1.13), and the 
coefficients are labeled as in Table 2.1. Now split the matrix into two parts so A = M + C. 
Let M contain the five-point template, and C contain the corner coefficients of the nine-point 
template. Factoring the variables from M and C, the matrices take the form 

thus 

1 + xxx 
A2 

M =  

-4 1 0 0 ... 
1 -4 1 0 ... 
0 1 -4 1 ... 
0 0 1 -4 ... 

* .  

= Xxl;2Xzz [sparse matrix Xxz + Xzx 
of ones ] = 4A2 

(3.35) 

(3.36) 

(3.37) 

The assumption WpeAt >> 1 leads to the most restrictive constraint. In addition for all 
components of 8 approximately the same and a = ~~A?%’~~, the matrix is nonsingular if 

Q < 1. 
e2 + 8 

2(1+ 82) 

Solving for 8, the constraint on At is 
-a + Ja2 +  CY - 2) 

a - 2  w,eAt < 

(3.38) 

(3.39) 

The norm llA?lcII was solved numerically for different sized problems. Figure 3.2 shows 

the results for an n x n grid. Large enough grids might eventually impose a more restrictive 
constraint than that needed to resolve cyclotron oscillations. While violating the constraint 
will not necessarily result in a singular matrix, meeting the constraint does guarantee a 
nonsingular matrix. 
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3.2 Effect of the Darwin Method 

Linear theory gives the dispersion characteristics of the Darwin limit in plasma. 
As expected longitudinal waves, such as plasma oscillations, are unaected. However, the 
absence of the solenoidal part of the displacement current does have major consequences for 
transverse waves. Fast waves (those with phase velocities larger than c) are nonpropagating. 

For example in a Darwin plasma with no imposed fields the dispersion relation for transverse 
waves is -$k2 = uge(l + Zm,/mi) .  This results in imaginary k or spatially damped 
fields. The magnitude of the effect on slow waves depends on the plasma characteristics. 
As discussed by Kaufman and Rostler[kau71], in a magnetized plasma ( c ~ / w ) & . ~ ~ ~  N 

( c k / ~ ) & ~ ~ ~ ~ ~ ~  - 1. So Darwin is best used for those phenomena where transverse wave 
velocities as well as particle velocities. are signiscantly less than the speed of light. 

A constraint on time step occurs for the numerical Darwin plasma with an imposed 
B-field. This can be seen in the dispersion relation for a neutral, magnetized plasma in which 
we neglect electrostatic fields and follow the fluid motion of the numerical plasma. A B-field 
is applied in the z direction, and spatial variation is allowed only in z. The linearized finite 

difference Eqs. (2.1), (2.60), and (2.38) become 

(3.40) 

(3.41) 

(3.42) 

Splitting these into components for Vz and V,, we have six equations and eight unknowns. 
A system of two equations and two unknowns results given time harmonic variation, z = 
ercp(-iuAt), for all quantities. Setting the determinant of the 2x2 matrix to zero gives the 
dispersion relation 

X2(1 + a2)(1 + 4a2)z4 - 2[X2(1 + a2)(1 - 4a2) + 18Xa2]z3 

+[X2(1 + a2)(1 + 4a2) + 8Xa2(1 - 2a2) + 36a2]z2 

-4a2[X(1 + 4a2) + 61. + 4a2(1 + 4a2) = 0 (3.43) 
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where Q = w,eAt/4 and X = 1 + (Ck/wpe)2. The magnitude of z versus w,eAt is plotted 
in Fig. 3.3 for various ck/wpe. 1 1 ~ 1 1  is larger than one which indicates instability. However, 
even in the worst case when Ck/wpe N 1, 1 1 . ~ 1 1  = 1.0002 for wCeAt = .4. For applications 
without large, imposed B-fields W c e A t  is usually much less than .4 and the number of time 
steps before this instability grows significantly is more than required by the simulation. 
This analysis is also overly conservative for those cases where the imposed field varies in 
space and time. See Chapter 4 for further discussion of our experience with simulations 
having imposed B-fields. 
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Figure 3.1: Comparison of strict differencing to simplified differencing. The difference in 
the implicit susceptibility terms of the implicit field equation is plotted for a harmonically 
varying potential. The terms agree well for wavelengths greater than 5Ax. 
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Figure 3.2: Maximum w,,At to guarantee nonsingular matrix for the implicit electrostatic 
field equation. This is a sufficient but not necessary condition. 
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Figure 3.3: Magnitude of the least damped mode vs w,At fiom the hear  analysis of the 
Darwin field equation and finite difference equations of motion in a constant B-field. 
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Chapter 4 

Characterization'of DADIPIC 
with Doubly Periodic Test Cases 

Several test cases follow which characterize the accuracy and robustness of DADIPIC 
under circumstances that are increashgly stressful to the algorithm. The simulations are 
doubly periodic to investigate the core algorithm without the effects of boundaries and to A- 

low comparison to the kinetic theory of section 3.1.2. The first case is a uniform, Maxwellian 
plasma used to determine the numerical effects on what should be an equilibrium situation. 
The plasma is magnetized to check the applicability of the Darwin dispersion results. Fi- 
nally the reaction of the algorithm to large density gradients is tested with expanding plasma 
columns. 

4.1 Uniform Plasma: Fluctuations 

The first test case is a comparison of fluctuations in a uniform, MaxweKan DADIPIC 
plasma to the fluctuation spectral density predicted by the kinetic theory of section 3.1.2. 
The analytic results in the figures are due to Eqs. (3.29) and (3.30) for continuum and PIC 
plasmas respectively. A simulation with 32 x 32 cells was initialized with 30000 particles 
each of electrons and protons at a density of lO8cmV3. The size of the problem was set 
at 1 cm2. The plasma temperature (Te = Ti) and time step were varied to get desired 

values for AX/XDE and w,,At. Fast Fourier transforms of the electrostatic field were taken 

in space at each time step with the results stored for several k. Temporal FFT's of these 
results were taken at the end of the simulation giving (27r)4E(k,w),and Eq. (3.31) was then 
used to get the measured spectral density. 
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Fig. 4.la shows the spectral density for the electrostatic field when AX/XDE = .5 

and +,At = .2. For this plot IC, and kz correspond to the longest wavelength in the 
system, 2n/L. As expected in this case the DADPIC calculation is close to the continuum 
result. Notice the peak in the spectral density near the frequency of plasma oscillations. 

For intermediate kXDE this peak occurs since the root of the dispersion relation is almost 
real (small Landau damping), and the argument for the exponential decay of the spectral 
density is inversely proportional to kXDE. At high frequency the finite nuniber of particles 
in the simulation causes a floor of noise above the analytic result. 

For larger spatial and temporal discretization the PIC results become substantially 
different than the continuous plasma. The aliases due to the bite grid keep energy in 
modes which would have very little in the real plasma. Since the Debye length and plasma 
frequency are no longer resolved, this result is not unexpected. It is not a problem as long 
as the fluctuations do not cause unacceptable numerical heating or affect low frequency 
phenomena of interest. These concerns will be investigated in the following sections. Figures 
4.lb and 4.lc have the case of large Ax and the case of large Ax and At respectively. Notice 
that the simulation still agrees well with the discrete analytic theory of section 3.1.2. 

These results indicate that DADIPIC has the desired quality of reproducing con- 
tinuum plasma phenomena as AX/XDE and w,,At are decreased. Of course, this is not the 

discretization that would be used in practice since explicit PIC would run such problems 
much faster. One can also see that no unexpected behavior is occurring as Ax and At are 
increased, allowing reliance on the results of the discrete theory to predict the trends in 
DADIPIC due to fluctuations. The implication is that DADIPIC can operate with large 
temporal and spatial discretization as long as the criterion of particles moving less than a 
cell in a time step is met. 

These simulations also provide a standard for algorithm timings. The code was 
run on the C machine (Cray 2) at the National Energy Research Supercomputer Center 
(NERSC). For the given simulation parameters a time step takes -3.2 s. The portion of the 
time taken to complete the various components of a time step is 42% for particle .operations, 
25% for solution of the SDF equations, and 32% for solution of the implicit electrostatic 
field equation. Of course, these results serve as typical examples. For other simulations the 

time for particle operations should simply scale with the number of particles, but different 
boundary conditions and grid sizes effect the convergence of the DAD1 and bi-conjugate 
gradient routines. The solution of the fields may take a larger or smaller proportion of the 
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run time as the simulation is changed. 
These results can be used to compare DADIPIC to a fully electrodynamic, explicit 

PIC code. For an explicit code solving for the fields should take negligible time. Because 
of the direct implicit particle advance, DADIPIC effectively has two particle pushes. So an 
explicit code would take half the time for particle operations. Thus we can expect that an 
explicit code would complete a time step five times faster than DADIPIC for a similar sized 
simulation. Of course, DADIPIC can run with much larger time steps and grid size than an 
explicit code. As a typical example consider a DADPIC simulation with AX/XDe = 30 and 
WpeAt = 10. With an explicit code we would typically run with Ax/xD, = WpeAt = .2. SO 
DADIPIC would be able to run (30/.2) x (30/.2) x (10/.2)/5 = 225000 times faster for a 2-D 
simulation with the same number of particles per cell as an explicit code. This neglects the 
huge expense in memory due to the factor of 22500 more particles in the explicit simulation. 

4.2 Uniform Plasma: Change in Energy due to Fluctua- 
tions 

This section presents the results of a set of simulations as suggested in chapter 3 to 
find the form of the function in Eq. (3.33) for the change in kinetic energy of the DADIPIC 
plasma due to fluctuations. A set of 28 simulations with characteristics described in the 
previous section were completed with AZ/XDe and WpeAt ranging from .2 to 20. 

Figure 4.2 is a set of typical time histories for the particle and field energies. No- 
tice that the initial relaxation of the field energy occurs quickly in the first few time steps, 
followed by a general trend of heating or cooling. In the simulations the field energy repre- 
sented only a small fraction of the total energy, and the ions showed almost no change from 
their initial kinetic energy. For all practical purposes the change in energy was due to the 

change in the thermal energy of the electrons in the x and z directions. In these 2-D simu- 
lations there is no electrostatic field in the y direction, and the fluctuation electromagnetic 
fields had no perceptible impact on the particle kinetic energy in the y direction. 

Several trends in the field and particle energies occur. As Az/Ao, is increased the 
ratio of electrostatic field energy to particle energy increases from 2 x to .044. This 
is due to the grid aliasing of wavelengths which causes the spectral density to be larger at 
short wavelengths than in a real plasma [bir85]. As WpeAt increases the electrostatic field 
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Table 4.1: Change in Energy AE/EoN in AX/ADe, WpeAt Parameter Space 

0.2 
20.0 2.2e-3 
10.0 4.8e-4 
5.0 1.Oe-4 

- 2.0 3.Oe-6 
AD, 

1.0 -2.6e-6 
0.5 -3.2e-6 
0.2 -1.7e-6 

wpe At 
0.5 1.0 2.0 5.0 10.0 20.0 

3 . 5 ~ 3  3.3e-3 2.le-3 2.7e-4 -2.0~4 1.0e-3 
8.Oe-4 8.Oe-4 3.3e-4 -2.3e-4 6.5e-4 
1.7e-4 8.5e-5 -1.4e-4 3.3e-4 
-2.4e-5 -1.3e-4 -4.5e-5 
-3.2e-5 -5.9e-5 
-1.7e-5 

energy decreases. For AX/ADe = 20 the electrostatic field energy decreases by a factor of 
2500 as At is changed from its minimum to its maximum value. The reduction is due to 
the smoothing caused by simplified differencing which effectively reduces short wavelength 
fields by 1/(1+ (~peAt)~/2) ,  and to the damping of high fiequency oscillations caused by 

the implicit time advance. 
As expected the energy in the electromagnetic fields is much smaller than the 

electrostatic field energy. Linear kinetic theory predicts the electromagnetic fluctuation 
field energy to be approximately v2/c2 less than the electrostatic field energy ba86]. For 
the DADPIC plasma it is even less. For small At as Ax/AD, is varied from .2 to 20, 
E~o,JE~,.,. - 10-l' to and B2/Efr,. - to As the time step is increased E:ol 
does not decrease as fast as E:r,., and B2 remains essentially constant. For large enough 
wp,At the B-field energy may even overtake the electrostatic field energy. However, the 
electromagnetic field energy was not a significant fraction of the electrostatic field energy 
in any of our simulations. 

The contour plot of Fig. 4.3 shows the change in energy in the form AE/EoN 
where A E  is the change in the total energy over the simulation, Eo is the initial energy 

in fields and particles, and N is the number of time steps in the simulation. Table 4.1 
has the results of the simulations which were interpolated to form the contour plot. The 
general trend is heating for large Ax due to the interpolation of the grid force bir851 and 
cooling for large At due to the implicit electrostatic solve. Simulations with and without 
the electromagnetic fields gave indistinguishable results for heating. This is consistent with 
the relatively small magnitude of the electromagnetic fields. 
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These results are similar to Cohen, et. al. [coh89] where the l-D electrostatic 
direct implicit D1 scheme was investigated. A difference between these results and theirs 
occurs in the region where AX/ADe = WpeAt. The differences appear to be the result of 
the type of simulations performed. Cohen, et. al. simulated periodic expanding plasma 
slabs and always observed cooling in the Ax/Aoe = WpeAt region while in our uniform 
plasma simulations heating occurs in this region. The difference is in the initial state of the 
expanding slab with a step function in density. As shown in several sources [fii90] even for 

cases where the implicit solution eventually results in a net gain in total system energy, the 
behavior at early time is a decrease in total system energy. This is due to the effect of the 
implicit particle push on the spatially and temporally unresolved initial expansion of the 
slab. If the slab had been started with a slight slope to its sides the expansion would have 

been resolved, and only the fluctuations in the densest part of the plasma would affect the 
change in total energy. The return of heating as v&t/Ax N 1 is due to the breakdown 
of the predictor-corrector solution for the electrostatic field. That solution depended on an 

expansion which is accurate only when particles move less than a cell in a time step. 
As was stated in chapter 3 our intent is only to quantify the impact of fluctuations 

assuming the other phenomena of interest are well resolved. With this qualification in 
mind, the contour plot can be used for any simulation by adjusting for the particle density, 

np = 30000 ~ r n - ~ ,  and plasma density, no = lo8 ~ m - ~ ,  used here. The plot shows two 
contours where energy is conserved. Note the upper contour is a stable equilibrium. Plasmas 
with AX/ADe above the contour will heat and move down to the contour. Plasmas with 
AX/ADe below the contour will cool and move up to the contour. However, plasmas in the 
heating region to the right will continue to heat and reach the point where > 1. 

It is therefore advisable to run in the region where 3vthAt/Ax N 1 in the densest part of 
the plasma. Parts of the plasma with lower densities will be at a point of smaller AX/ADe 
and wp,At where energy is even better conserved. 

Figure 4.4 has the final particle velocity distribution (dots) compared to the initial 
Maxwellian (dashed line) and a Maxwellian at the calculated temperature of the plasma 
at the end of the simulation (solid line) from several of the simulations used to generate 
the energy conservation contour plot. In all of these cases AX/ADe is 10. The sequence 
of the plots is for increasing time step showing the effect of the first heating region (Fig. 

4.4a), the energy conserving contour (Fig. 4.4b), the cooling region (Fig. 4.4c), and the 
. second heating region (Fig. 4.4d). Fig. 4.4e gives the distribution in the direction out of 
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the simulation plane. Fig. 4.4e provides computational evidence that there is no change in 

the distribution in the direction which has no Eirr indicating no other significant numerical 
heating or cooling mechanisms at work. 

In the first heating region the particle distribution is mostly Maxwellian except 

at the largest velocities where the faster electrons appear somewhat cooled by the implicit 
particle advance. Along the energy conserving contour the final distribution is not much 
different than the initial distribution. More pronoimced changes have o c c ~ e d  for 1-D sim- 
ulations with a larger grid that were run for more time steps. A decrease in the tails and 
center of the distribution balanced by a bulging near the thermal velocity is observed. This 
indicates that faster particles are being cooled by the implicit advance while the slower 
particles are still heating due to the grid force. In the cooling region again the distribution 
remains essentially Maxwellian as the whole distribution cools due to the implicit particle 
advance. The only distribution which deviates substantidly &om a Maxwellian is that &om 
the second heating region. Here the slower particles appear to remain near the initial dis- 
tribution, but the faster particles heat dramatically. The heating appears to occur for those 
particles with speeds of zlth and above. In this region these are particles which are moving 
more than one cell in a time step. These results indicate that it is possible to use DADIPIC 
with large temporal and spatial discretization while not causing large numerical affects to 
the particle velocity distribution. However, the constraint of a relationship between At and 
Ax must be met. 

4.3 Uniform Plasma: Drift Through the Grid 

The last test case of fluctuations involves the drift of a Maxwellian plasma through 
the grid. For the same simulation parameters as described above, the magnitude for the 
drift velocity, ?Id, was chosen so that it was resolved (vdAt/Ax = .2). w,,At was set at one. 
Ax/Ao, was then varied to give different ratios of the dr i i  velocity to the thermal velocity. 
The results are listed in table 4.2. The numerical heating or cooling of the plasma is not 
greatly aected by motion through the grid. So the contours of the previous section still 
apply. The relative change in energy of the drift is signiscantly less than that of the plasma 
as long as the drift motion (vd + 21th) is resolved. Unfortunately, we cannot resolve the drift 
motion and sit on the energy conservation contour at the same time when vd/vth > 1. Using 
small At allows smaller Ax for a given drift, but this removes the need to be implicit. So 
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Table 4.2: Change in energy AE/EoN for a plasma drifting through the grid 

1 0.2 1.2 6.Oe-4 -1.9e-4 -i'.5e-4 .' 

5 1.0 0.4 -1.164 1.9e-4 2.9e-4 
10 2.0 0.3 -4.4e-5 1.9e-3 1.9e-3 

2 0.4 0.7 -3.065 -3.264 -3.8e-4 

DADIPIC appears to be well suited for plasmas with drifts less than vth, but something 
further will have to be done to handle plasmas with large drifts. One possible solution may 
be to apply a Sf formulation[dip91] for the plasma instead of particles. This would reduce 
fluctuations and the fluctuation induced heating. 

4.4 Uniform Plasma: Imposed Magnetic Field 

Electron cyclotron waves were investigated to test the algorithm's ability to sim- 
ulate low frequency oscillations without the complications of boundary conditions. These 
right circularly polarized waves propagate along the B-field lines in a magnetized plasma. 

The dominant interaction is between the particles and the electromagnetic (Darwin) fields. 
The electrostatic field maintains charge neutrality in the fluctuating but essentially uniform 
plasma. Without large density gradients or nonneutral regions the direct implicit method 
only serves the function of allowing us to use large time steps while retaining electron ki- 
netics. The B-field is chosen so Wce << Wpe, where wce is taken as a positive quantity. This 
gives a phase velocity much less than cy making the Darwin approximation reasonable. The 
cold plasma dispersion relation is[kra86] 

In the simulations w,/wp, = .Ol, the density is lo8 ~ m - ~ ,  and the number of 
particles per cell is 30. The simulation region is periodic in both the x and z directions, and 
the imposed B-field, Bo, is applied in the z direction. The spatial and temporal discretization 
is set SO that wpeAt = 20 and A X / X D e  = 70 or W p e A t  = 40 and A x / x D ,  = 140. These 
parameters are chosen to satisfy the constraints of resolving the wavelengths, resolving the 
frequency, and residing near the energy conserving contour, 3vthAt/Az - 1. The plasma 
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thermal velocities needed to achieve these constraints are not large enough to make any 
observable chaage in the oscillation frequency from the cold plasma dispersion relation. 

. Several simulations both with and without initial perturbations were run. In 
the fist type a wave is initialized in the plasma with the size of the simulation region in 

the z direction set to one wavelength. The grid is 64 nodes in z and 8 in x. Two spatial 
dimensions are not necessary here, but this does verify the operation of the 2-D field solvers. 
The relationships between the perturbed fluid velocities and perturbed fields derived from 
linear theory are 

The particles are loaded according to a dr23ed maxwellian with the drift velocity having 
the functional form of equation (4.2). To ensure resolution of v1 given the set ratio of At 
and Ax, 211 is set to .25~the. The resulting perturbed B-fields are less than 5% of Bo. 

The resulting fields verified that the right hand sides of the B and Esol equations 
were derived correctly and that the field solving routines were calculating the expected 

solutions. This also allowed us to determine if particle noise in terms such as the kinetic 

energy tensor, K, might cause excessive noise in the resulting fields. Given the magnitude 
of q, the fluctuations in v are not much smaller than the imposed perturbation. As shown 
in Fig. 4.5, the initial fields agree with Eq. (4.2). The initialized parameters are v1 = 

1.025 x lo7 cm/s and CL/upe = 1 which should give field magnitudes of IEII/Bo = 1.7 x 

and IB1I/B0 = .034. Energy conservation for this whole group of simulations ranged from 
1% to 3% due to  electrostatic 3uctuations. The frequency of oscillation was recorded for 
several different initial wavelengths to compare to the analytic dispersion curve for the real 
part of the frequency. 

The second type of simulation is a uniform, unperturbed plasma where peaks in 
the electromagnetic spectral density indicate the dispersion relation for electron cyclotron 
waves. The Fourier transform in space and time is recorded for Bz(kz, w). A square 32 x 32 
grid is used in this case. The results of both types of simulations agree with the analytic 
dispersion relation as indicated by Fig. 4.6. 

In the warm plasma the particles see the Doppler shifted frequency of the wave, 
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w‘ = w - wllk, where 2111 is the particle velocity along the B-field. When the force on the 
particles due to the transverse Efield varies in time near the gyrofrequency of the particles, 
we, a resonant interation between the wave and the particles occurs, providing a kinetic 
test for DADIPIC. However, to get the correct damping, the distribution function near 

(w - w e ) / k v t h e  must be well resolved. Unfortunately, damping which is smaller than the 
oscillation frequency occurs when the resonance is with particles far out in the tail of the 
distribution. To overcome this we set up a plasma with two negative species. The first is a 
dense, cold species which determines the red part of the frequency. The second is a sparse, 
hot species which determines the damping. The dispersion relation for the warm plasma 
becomes [sch79] 

The plasma parameters are chosen so only the second, third, and sixth terms 

contribute, The second species with its low density can be set to cause small damping 
while its particles are near resonance. In this way there are suflicient PIC particles in the 
desired region of the distribution. The simulations are l-D so electrostatic fluctuations exist 

only parallel to the B-field. The cold species has a temperature parallel to the B-field so 
Ax/XDe,cold and Wpe,wldAt  can be set to prevent heating due to the electrostatic fluctuations. 
The temperature perpendicular to the B-field is set very low so w1 can damp significantly 
before being swamped by thermal noise. The plasma parameters are shown in table 4.3. 
The damping was varied in several simulations by changing the mass and temperature of 
the hot species while maintaing ‘?Jthe,hot constant. This allows us to change the damping 
and continue to resolve ‘f&e,hot. 

Figure 4.7 shows the time histories from a simulation where the hot species mass 
was two m e .  The B-field recorded at a point (Fig. 4.7a) is a damped sinusoid as expected. 
An exponential curve fit to the B-field energy time history (Fig. 4.7b) provides the estimate 
to the damping. There is an initial jump in the total system energy (Fig. 4.7~) of about 1% 
as the initial load of particles relaxes. Over the rest of the simulation the damping of the 
electron cyclotron wave and electrostatic fluctuations have little effect on the total system 
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Table 4.3: Plasma parameters for electron cyclotron wave damping 

energy. Note that the energy time histories do not include the energy of the applied B-field. 
The damping observed in several simulations is compared with the damping derived from 
Eq. (4.3) in Fig. 4.8. The damping becomes largest neaz mh/me = 4 since the oscillation 
frequency matches the cyclotron frequency of the hot species. The agreement between 
DADIPIC and theory is very good over an order of magnitude change in damping rate. 

As shown in Chapter 3, this implementation of the Darwin method results in a 
scheme which is slightly unstable even at small At. In the above simulations w,eAt was 

kept at less than .4, and no adverse numerical instability effects were apparent. In addition, 
no problems with solution of the electrostatic field equation matrix were encountered on 
the 32 x 32 grids. Next the effects of the numerical instability in simulations are quantified 

to gauge the applicability of the linear theory result of Chapter 3 for the actual code. 

A series of 1-D periodic simulations were run with Ax/Xoe = 10 and w,,At = 3.1, 
parameters which minimized numerical effects from the direct implicit scheme. The length 

of the simulations was 167 cm with 64 grid nodes. The plasma density of 1 x 108cm-3 gave 

Ckm,x/Wpe = 2 where kmux corresponds to the longest wavelength in the system. Larger 

wavenumbers are available, but as shown by Fig. 3.3 oscillations at such wavenumbers are 
less unstable. If the theoretical dispersion relation applies, only the longest wavelength 
in the system should grow noticeably. The simulations were run long enough to show a 

significant increase in the magnitude of the unstable mode (at least a factor of 20), and the 
growth rate was calculated from an exponential curve fit to the B-field energy time history. 
The results are shown in Table 4.4. The DADIF'IC results agree with the linear theory 
to within a few percent for both the oscillation frequency and growth of the instability. 
This means we can rely on the linear theory to  predict the effects of this instability. The 
dispersion relation can be used to set the time step with the goal of keeping the effect of 
the numerical instability small given the size of the system, the magnitude of the B-field, 
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Table 4.4: Real, w, and imaginary, y, parts of the frequency from the Darwin dispersion 
relation in a constant B-field 

w,eAt analytic w A t  PIC w A t  analytic yAt PIC ?At 
0.8 0.617 0.61 0.00244 0.0021 
1.2 0.889 0.88 0.00965 0.0097 
1.6 1.13 1.1 0.0227 0.021 

and the plasma frequency. 

4.5 Large Density Gradients: Expanding Slab 

Several authors have used the expansion of a plasma slab into vacuum as a test of 
implicit electrostatic algorithms [coh89], [fri90]. The expanding slab is well suited for this 
purpose since it involves large density gradients in the plasma and significant electrostatic 
fields which drive the expansion. The expansion of a l-dimensional, collisionless plasma slab 

into vacuum has been considered in detail both analytically [all701 and numerically [den79]. 
The plasma expands due to the thermal velocity of the particles. The electrons move out 
ahead of the ions causing an electrostatic field which drags the ions along. A rarefaction 
wave propagates back into the plasma at the ion-acoustic speed, cs = (ZKBTe/mi)1/2,  and 
the plasma density falls off exponentially behind the wave front. The ion velocity in the 
wave, vi, is a function of position with respect to the initial edge of the plasma, zi. 

DADIF'IC responded to the plasma slab in a manner similar to previous implicit 
electrostatic models. Fortunately, as with fluctuations in the uniform plasma the addition 
of the electromagnetics did not impact significantly on the results. Several simulations with 
different ion masses show the expected variation in the rate of expansion. The problem 
parameters were: number of grid points (NE. = nz = 32), system width (L = 395 cm), plasma 

width (Lslab = 157 cm), plasma density (10' ~ m - ~ ) ,  number of p'articles (.p = 30000), 
number of time steps (N = 256), and plasma temperature ( T e  = 29 eV). The parameters 
were chosen so that the plasma interior would reside near the energy conserving contour 
with W p e A t  = 10 and A X / X D e  = 32. 



67 

Figure 4.9 highlights the results of a typical simulation with m/me = 1836 and 

csAt/Az = .007. Figure 4.9a shows contours of electron density as a reference for the 
position of the plasma slab. Notice that the implicitly calculated Eirr (Fig. 4.9b) is excluded 
from the plasma because of the large w,,At. The electrostatic field exists mainly near the 
edge of the plasma where the electrons have separated from the ions, and the plasma density 
has decreased. Esol and B are too small to have much effect on the expansion. Both are 
concentrated in the plasma where the fluctuation current densities exist. 

Figure 4.9e is a time history of the total system energy. Several Merent phenom- 
ena are interacting to cause the initial drop and then increase of the total system energy. 
The electrostatic field energy drops off rapidly after the first 10% of the simulation. During 
the time of the large electrostatic field (due to the electrons out running the ions), the 
total system energy drops by 5%. This is due to the implicit scheme artificially slowing the 
electrons while the macroscopic field is large and the slab edge is spatially unresolved. In 
other words the implicit scheme is damping short timescale (high frequency) .motion. 

After theinitial expansion the slab edge becomes well resolved, and any changes in 
total energy are due to fluctuations in the bulk of the plasma. At this time the total energy 

begins to increase. The final result is a total energy only 2% below the initial energy. Other 
cases showed a significant increase above the initial energy by the end of the simulation. The 
cause of the late time increase in system energy is the change in the electron temperature 
due to the expansion. Since the electrons itre pulling the ions with them converting thermal 
into directed motion, the electron distribution cools in the expansion. For our example 
the electrons lost 50% of their thermal energy in the x and z directions a 30% decrease 
in AD,. The decrease moves Ax/AD, above the energy conservation contour. The result 

is numerical heating of the electrons and thus a numerically caused increase in the total 
energy. Since the numerically caused change in the total energy was small, there was not 
an adverse affect on the results. This is shown by the correct profile for the ion expansion 
velocity in Fig. 4.9f. 

DADIPIC appears to operate stably in situations with large electrostatic fields and 
. density gradients along with vacuum regions. At the same time low frequency, electrostatic 

phenomena is simulated correctly in the lower density regions, and energy is conserved to 
within a few percent. The loss in system energy was avoided by initializing the sides of 
the slab with a finite slope. One would not expect DADIPIC to correctly mimic the short 
time-scale expansion from the step function slab. 
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4.6 Large Density Gradients: Electron Beam Filamenta- 
tion 

Electron beam filamentation serves as the final doubly periodic test case for DADIPIC. 
In these tests density gradients, electrostatic fields, and electromagnetic fields are all sig- 
nificant. The results obtained here can be compared to those obtained with the fully elec- 
tromagnetic implicit code AVANT1 [hew87b]. Consider a neutral plasma column aligned 
along the y axis with electrons flowing in the column. The electrons have two components 
uniformly distributed across the column, a dense target, T, flowing in the negative y direc- 
tion and a faster beam, B, flowing in the positive y direction. This results in a Weibel-type 
electromagnetic instability in which the electron components breakup into filaments [wei59]. 
For the case where the total momentum in the system is zero and the electron components 
are at the same temperature the dispersion relation is [mom661 

(W2 - k2V;he)(W2 - w ; ~  - C2k2) - k 2 2 2  (w~Tu,,T + w ~ B u & )  = 0 (4.5) 

A purely imaginary root to this equation, indicating growth of an instability, results when 

So for any particular initial conditions the instability will only grow for certain wavelengths. 
As the transverse temperature increases, progressively longer wavelengths will become sta- 
ble. 

Two simulations were initialized to investigate this instability. The first was a 
uniform, doubly periodic plasma where the size of the simulation region sets the longest 
wavelength. This allows the electromagnetic instability to grow with minimal electrostatic 
effects. The second was a finite size column which could expand during the simulation. 
Here nonuniformity, electromagnetic, and electrostatic effects were significant at the same 
time. The parameters for these runs are 32 x 32 grid, W p e A t  = 10, A X / A D e  = 48, length 
of problem 395 cm, 30000 particles of each species, ion density of lo8 ~ m - ~ ,  and 160 time 
steps. In these simulations the initial temperature was chosen to allow the heating due to 
the filamentation to increase AD,  and bring A z / A D e  to the energy conservation contour. 
The electron densities and velocities normalized to the ion density and the speed of light 
respectively are shown in Table 4.5. Since the streaming velocities are in the y direction 
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Table 4.5: Species parameters for filamentation simulations 

Beam electrons Target electrons ions 
Density 1/11 10111 1 
vdri f t /c .05 .005 0 
vth/c .005 .005 1.2 x 10-4 

where there is no electrostatic field, the electrostatic two-stream instability will not occur. 

This significantly simplifies the interactions to be observed. 
Figure 4.10 shows the B-field energy and particle energy for the uniform plasma 

and finite beam problems. The beam energy (KEII) is convertied into field energy and 

perpendicular thermal energy as the instability grows. Note that K E l  does not grow as 
much in the finite beam case since not as large a vth is required to move the stable point to  
k less than &in. The growth rate can be found quite easily from the slope of the initially 
linear increasing B-field energy on the log plots. The variation of linear theory growth rate 

with wavenumber is shown in Fig. 4.11. The horizontal lines in the figure are the results 
from simulation. The simulation results have been cut off at the maximum wavelengths 
attainable corresponding to the width of the simulation in the uniform plasma case and the 
width of the beam in the finite beam case. In both cases the size of Ax was set so that 
the shorter wavelengths available in the simulations would be stable. In the simulations 
the instability should grow at the largest rate within the band of available wavelengths. 
Considering the largest available linear theory growth rate, there is a variation of 210% 
from the simulation results (?PIC = .OlUpe vs Ythemy = .0095wp, for the finite beam case). 

The fastest growing mode for the finite beam is also the longest wavelength which 
can fit within the beam width and the last mode to stabilize. The longest wavelength 
mode is thus the only mode to grow to perceptible size as shown in the particle plots 
of the beam and target electrons in Fig. 4.12 where the beam electrons have coalesced 
into a single filament. The uniform plasma, on the other hand, is wide enough to allow 
longer wavelength modes to continue to grow after the fastest mode has stabilized. This 
is evidenced by the second spurt of growth in the B-field energy. Fig. 4.13 illustrates the 
change in mode with B-field plots at early and late time. At early time the fastest growing 
mode with &/Ope = 1.5 dominates while at late time the mode saturates at the longest 
wavelength available. 
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Finally, there is the question of whether any changes in energy due to numerical 
effects are important. Fig. 4.14 has the time histories of the total energy for the two 

simulations. In the uniform case the electrons are heated in the perpendicular direction 
by the instability. In the finite beam case the electrons are heated by the instability and 
cooled by the plasma column expansion. In both cases the change in temperature causes 
a change in A Z / X o e  in the plane of the electrostatic field. In addition to the heating 
effects, the B-fields have grown to significant size by the end of the simulations. The fields 
reach magnitudes where w,,At = .1 and the off diagonal terms in the implicit susceptibility 
tensor are 5% of the diagonal term. However, in both cases the initial choice of AX/ADe 
allowed the plasmas to remain near enough to the energy conservation contour to cause 
negligible change in the total energy (- 2%) compared to the 60% change in the target 
electron thermal energy and 730% change in the beam electron thermal energy (uniform 
case). This results in v&t/Ax = 3.8 and 1.8 at the end of the simulation for the beam and 
target electrons respectively. Remember the energy conservation contour is approximately 
3vthAt/Ax = 1. As shown by the excellent agreement with theory of the growth rates and 

mode wavelengths, any numerical effects did not adversely affect the final results. 

4.7 DADIPIC mode of operation 

The theory of chapter 3 and its verification in this chapter lead us to some general 

guidelines to ensure stable and accurate DADIPIC simulation. These guidelines combine 
to give a region of operation in Ax/Aoe vs W p e A t  space as shown in Fig. 4.15. In order to 
resolve the phenomenon of interest we are constrained by k A x  < 1 and wont  < .2. The 
cyclotron instability requires w,eAt < .4 which may be more or less stringent a constraint 
than the requirement to resolve the low frequency phenomenon. We must stay near the 
line 3vthAx/At  = 1 to prevent numerical heating as well as ensure accuracy of the implicit 
field equation and particle accelerations. The width of the allowed region around the energy 
conserving contour depends on the amount of numerical heating which can be tolerated. 
Essentially the condition 

must be met. In any particular simulation the change in the total kinetic energy due to the 
phenomena can probably be estimated. As the temperature of the plasma changes during 
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a simulation the ratio AX/ADe changes as represented by the vertical bar in Fig. 4.15. One 

could find the numerical effect on the kinetic energy from 

The bounding lines around the energy conserving contour are set by the condition of Eq. 

(4.7). The simulation should be run where the bar for the change in Az/Ao, fits between 
the allowed limits due to numerical changes in energy. 

With this method one can simulate two different types of situations. The first is 
equilibrium phenomena where Te  remains basically unchanged. Large but nearly balanced 
fluxes of energy into and out of the system are still possible. In this case we set the spatial 
and temporal discretization so the simulation resides on the energy conserving contour and 
the phenomenon of interest is resolved. Second, we can handle systems where the plasma 
temperature is changing by initializing the simulation so that the energy conserving contour 
is crossed minimizing numerical heating/cooling effects. 

There are two schemes which may further minimize numerical heating/cooling 
and further increase the width of the simulation region. The time step could be varied 

dynamically during a simulation in order to stay near the energy conserving contour. An 
alternative is to implement a 6f scheme [dip911 to minimize the electrostatic fluctuations 
which are tlie cause of the numerical change in kinetic energy. 



1 
n 
0 
r” 
W 

\ 

Q 0.0 xi 
3 
W 

0.00 

0.0001 _Lr 
0 0.1 0.2 0.3 0.4 0.5 0.6 ( 7 

I 
-== PIC theory - Continuous theory 

DADIPIC result 

72 

Figure 4.1: Comparison of DADIPIC spectral density results to predictions from continuous 
and PIC linear theory for uniform plasma. a) A X / A D e  = .5 and U p e a t  = .2, b) A X / A D e  = 5. 
and W p e A t  = .2, C) A X / A D e  = 5. and wpeAt = 5. The DADIPIC results are in reasonable 
agreement with PIC linear theory. 
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Figure 4.2: Time histories of particle and field energies for a doubly periodic, uniform 
plasma DADIPIC simulation with A X / X D e  = 10. and W p A t  = 5.: a) total system energy, 
b) Eirr field energy, c) Esol field energy, and d) B-field energy. All are normalized to the 
initial total system energy E,. Notice the much smaller magnitude of the electromagnetic 
field energies compared to the electrostatic field energy. 
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Figure 4.3: Contour plot of AE/E,N in Ax/Aoe and UpAt space. The dots are the 
locations of the simulations run to generate the contours. The upper left hand region and 
the region near vthAt/Ax = 1 show heating. The region between with the dashed contours 
lines has cooling. Simulations were not run in the region where vthAt/Ax > 1. 
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Figure 4.4: Particle velocity distributions vs v/vth resulting for different values of w,,At: 
a) in the first heating region where 3vthAt/Az < 1, b) along the energy conserving conto& 
where 3vthAt/A,a: N 1, c) in the cooling region, d) in the second heating region where 
vt,At/Aa: = 1, and e) in the direction out of the simulation plane. 
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Figure 4.5: The grid velocity, vy, and the generated fields, Bz and Esol,y, for an electron 
cyclotron wave initialized in the particle distribution of a DADIPIC simulation. 
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Figure 4.6: Electron cyclotron wave dispersion relation for the real part of the frequency. 
The solid line is the analytic result for the cold magnetoplasma. The points axe the 
DADIPIC results. The error bars are the fwhm of the peaks in the FFT's. 
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Figure 4.7: The time evolution of an electron cyclotron wave simulation b) the oscillating 
B-field, b) the B-field energy with an exponential curve fit, and c) the change in the total 
system energy normalized to the initial total system energy. 
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Figure 4.8: Electron cyclotron wave damping rate as the hot species mass is changed. The 
solid line is the analytic damping, and the dots are damping rates measured from DADIPIC 
simulations. The simulations were all initialized with the same wavelength, ck/wp, = .6. 
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Figure 4.9: Expanding slab simulation: a) density contours showing the expansion of 
the slab, b) the electrostatic field concentrated near the edge of the slab (longest vec- 
tor=5.25 V/cm), c) solenoidal Efield (longest vector=.0194 V/cm) and d) B-field (longest 
vector=4.77e-3 gauss) concentrated in the plasma where currents exist, e) total system 
energy, f)  ion particle phase space with the cs + (z - zi)/t dependence for the velocity. 
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Figure 4.10: Beam filamentation B-field and particle energies showing the exponential in- 
crease of the B-field during growth of the instability: a) the uniform plasma and b) the 
finite beam. 
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Figure 4.11: Beam filamentation growth rates. The solid curve is the theoretical disper- 
sion curve. The large dashed line (uniform plasma) and small dashed line (finite beam) 
show the grow rates observed in DADIF'IC simulations. The lines extend to the minimum 
wavenumbers available in the simulations. 
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Figure 4.12: Beam filamentation electron particle plots for the finite beam: a) beam elec- 
trons and b) target electrons. These are snapshots at w,,At = 1600 after saturation of the 
instability where the beam electrons have coalesced into one filament. 
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Figure 4.13: Beam filamentation B-field plots for the uniform plasma showing a change in 
the unstable mode. a) At.early time, w,,At = 320, a shorter wavelength has the fastest 
growth rate (longest vector=.0531 gauss). b) At late time, w,,At = 1600, the initial mode 
stabilizes and the slower growing longest wavelength mode dominates (longest vector=.356 
gauss). 
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Figure 4.14: Beam filamentation total system energy. Even with the large changes in T, 
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Chapter 5 

Heating in Inductive Plasma 
Processing Reactors 

5.1 Plasma Processing 

Plasma enhanced chemical processes are widely used to chemically alter the surface 
properties of materials used in electronics, automotive, steel, biomedical and toxic waste 
management industries[lie94]. This plasma processing usually falls into the categories of 
removing material from a surface for cleaning or etching, depositing films of material on 
top of a surface, or modifying the surface through doping. The basic design of a plasma 
processing reactor is an enclosed, evacuated conducting box into which a gas is pumped and 

partially ionized. The plasma electrons and ions move toward the walls and are neutralized. 
The plasma is replenished through ionizing collisions of the higher velocity electrons with 

the neutral gas. In these reactors radio-frequency, rf, electromagnetic fields pump power 
into the electrons in order to maintain the discharge. 

As with any confined plasma, the plasma rises to a positive potential with respect 
to the walls. This retards the more mobile electrons, allowing the net current to the walls to 
be zero and maintaining charge neutrality in the plasma. Since the plasma tends to exclude 
DC Efields, most of the potential drop occurs in a narrow region next to the walls called 

a sheath. The object to be processed is also placed in the reactor, and usually it is set at a 
negative potential with respect to the reactor walls. As a result a larger sheath forms around 
the object, and the ions are accelerated to its surface with an energy equal to the plasma 
potential plus the potential difference between the object and the walls. The reactor acts 
as a container in which the chemic& processing of the material surface take place. Reactant 
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agents for the chemical processes may be pumped into the reactor or formed by the plasma 
itself. 

Plasmas have advantages and disadvantages in processing material surfaces. One 
of the main advantages is that the chemical processes in the plasma greatly increase the 
rate at which reactions occur. In low pressure discharges the object or substrate is at a 
much lower temperature than the plasma, and processes such as Plasma Enhanced Chemi- 
cal Vapor Deposition (PECVD) can proceed much faster than conventional Chemical Vapor 

Deposition (CVD). In CVD the substrate is at the same temperature as the gas so reac- 
tion and deposition rates must be kept low in order to prevent melting of the substrate. 
Features on a surface can be made smaller with plasma reactors because the etching can 
be more anisotropic. The ion bombardment of the substrate increases the reaction rate in 
the direction of ion motion and removes any passivating films which may build up on the 
surface. For coating the surface of an irregular object, Plasma-Immersion Ion Implantation 
(PIII) has proven to be superior to beams because the narrow sheath closely follows the 
contours of the object. 

Of course, there are disadvantages in the use of plasmas which has led to the 
experimental and theoretical efforts to improve plasma processing reactors. Plasmas tend 
to have less selectivity, the ability to etch only specific materials and not others, than wet 
or purely chemical etches. In addition unlike a gas or liquid in a box, the loss of plasma at 
the walls causes a variation in the plasma density across the reactor. Since the flux of ions 
depends on the density, this variation results in less uniformity of the etch or deposition 
process. 

The reactors for processing microelectronic chips are being designed to meet certain 

requirements. The desirability of high processing or etching rates increases the importance 
of high plasma density. At the same time neutral densities must be minimized to ease 
the removal and disposal of effluent and keep feedstock costs down. Uniformity to greater 

than 1% is desired over diameters of 20 cm or greater. Finally, the ion energies must be 
kept low to prevent damage to the chips and to minimize contamination from reactor wall 
sputtering. The typical steps in etching a wafer include: depositing a film on a substrate 
(PP), depositing photoresist on top of the film, exposing the resist to light through a pattern, 
developing the resist and removing the exposed resist regions (PP), etching the film regions 
exposed by the resist removal (PP), and removing the remaining photoresist (PP). Those 
steps designated with (PP) can be accomplished with plasma processing. 
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Two general types of reactors for wafer processing, capacitive and inductive, are 

shown in Fig. 5.1. Capacitive reactors are essentially two parallel conducting plates with an 

rf variation of the potential between the plates. This time varying potential, which manifests 
itself as Efields in the plasma sheaths near the plates, both maintains the discharge through 
heating and accelerates the ions to the substrate. Inductively-coupled plasma, ICP, sources 
use a current-driven antenna, producing mainly inductive fields. The antenna is usually 
separated from the plasma by a dielectric and possibly a Faraday shield which minimizes 

capacitive effects. A potential different than the wall potential may be applied to the 
chip, allowing an additional adjustable parameter to achieve desired ion energies. Unlike 
capacitive reactors this potential can be unrelated to plasma generation. Typically both 
types of reactors operate with electron temperatures of a few eV and input power of a few 
hundred watts. 

The differences between the reactors lead to certain disadvantages.for each type in 
terms of the requirements listed above. A more extensive comparison of these reactors may 
be found in Lieberman and Lichteabergpie941. In capacitive reactors the ion acceleration 
energies in the electrostatic sheaths are higher (200-1000 eV instead of 20-500 eV), and the 
ionization fraction is lower to instead of to 10-l). The lower ionization 
fraction results in capacitive reactors operating at higher pressures (10 to 1000 mTorr in- 
stead of .5 to 50 mTorr) and lower plasma densities (1010cm-3 instead of 1011cm-3). In 

inductive reactors uniformity is more of an issue since the close parallel plates of a capaci- 
tive reactor minimize any geometric effects. Inductive reactors also suffer fiom degradation 
of the dielectric window due to ion bombardment and have greater pumping requirements 
because of the lower operating pressures. The higher plasma densities and adjustable wafer 

potential of the ICP sources have caused significant interest in these type of reactors over 
recent years. Eckert[eck74] describes some of the 100 year history of the sources and their 
uses. Hopwood[hop92] gives an overview of more recent designs with an emphasis on wafer 
processing. 

The objective of experimental and theoretical projects has been to understand 
and then optimize the operation of ICP sources in configurations useful for semiconductor 
wafer processing. The operational equilibrium which an ICP reaches is a matter of particle 
balance and power balance. In order for the plasma density, 9, to be in equilibrium the 
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particle flux to the walls, r, must balance with the electron-ion pair creation rate or 

where vit is the electron-neutral ionizing collision frequency, A is the ICP surface area, and 
V is the ICP volume. The flux to the walls is governed by diffusion of the plasma particles 
through the neutral gas and the electrostatic sheath potential built up to keep the time- 
average of the electron and ion fluxes equal. Models for the plasma density profile from 
the collisional to collisionless regimes can be found in [god86], [eck62], [ton29], [se163], and 
[lie94]. 

The power lost can be characterized by two terms: the collisional energy loss per 
electron-ion pair created, E,, and energy lost per electron, Ee, or ion, Ei, lost at the walls. 
Ionization, excitation, and momentum transfer collisions contribute to E,, and the rate of 
these collisions is dependent on np and the particle velocity distribution. The power out of 
the reactor takes the form 

where the second equality is due to the particle balance equation. The power into the system 
has two main sources: Ohmic heating and stochastic/collisionless inductive heating [pip49]. 
Stochastic capacitive heating [lie88], [godgo], which is due to the particle interaction with 
the time varying electrostatic sheath, is not as important in ICPs where the sheaths are 
smaller. The simulation of the collisionless heating and the velocity distribution dependence 
of the ionization rate require the use of a kinetic code. In the following sections DADIPIC 
simulation of collisionless heating and a method of integrating this into a methodology for 
investigating ICPs will be described. 

5.2 Collisional and Collisionless Heating 

Now that we have an appreciation for the importance of heating in the ICP, we 
shall determine its magnitude. In order to understand the underlying physics and to provide 
results for verification of correct DADIPIC operation, l-D analytic theory for the heating 

is investigated. In this section collisional heating is derived and then compared to results 

which include the stochastic heating, giving a measure of where stochastic effects become 
important. For the theory consider a transverse Efield, Ey, and B-field, B,, incident upon 
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a plasma slab of uniform density and temperature. The relevant linearized electromagnetic 
equations are[reu49] 

and 

ic aEy B, = -- 
w a x  (5-4) 

where a harmonic time-dependence is assumed. The difference between fluid and kinetic 
results lies in the treatment of the plasma for determining Jy. 

5.2.1 Collisional Heating 

If collisionless effects are ignored, the plasma can be treated as a collisional fluid, 
and the linearized fluid momentum transport equation can be used. 

where u,, is the electron-neutral collision frequency. Solving for V,, we arrive at an expres- 
sion for Jy 

Substituting into Eq. (5.3), we have 

where 

c y = -  WPe W [(,)ll2 r + l  +i(F)1/2] G a + i b  
c (vi, + w2)1/2 

2 1 / 2  m d r =  ( l + ( ~ , e / w )  ) . 
Given the boundary conditions Ey(0)  = Eo and Ey(L) = 0, we find expressions 

for the fields and the energy flux, Sz, into the plasma 

[exp[-a(x - L)] - exp[cy(x - L)]] E O  

E~(x) = exp(aL)  - exp(-crL) 

[exp[cy(x - L)] + exp[-a(x - L)]] iC QEO 

w exp(cyL) - exp(-cyL) &(a;) = -- 

(5-9) 

(5.10) 
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S, = ~ R e { ~ ~ 1 3 z ~ 2 }  0~ Bz 

(5.11) 
2~,2 cosh(2a.L) + cosh(2b.L) 2asin(2bL) - b(exp(2a.L) - exp(-2a.L)) - -- - 
87rw cosh(2a.L) - cosh(2bL) ezp(2aL) + ezp(-2aL) + 2cos(2bL) 

If the slab is very large so La, Lb >> 1, then 

(5.12) Ey(z) N E,e (a+ib)x 

From this expression a skin depth, the distance for the field magnitude to decrease by an 
e-folding, c.an be defhed 

This leads to the expected result for the power deposition per unit area 

1 E: w2e6une 

2 87r u:e f w2 
s, 2: -- 

(5.13) 

(5.14) 

Here and in the rest of this chapter, expressions for S, will be written in terms of ,302. In this 
way we can normalize with respect to the driven Efield for comparisons between various 
results. Note that given constant w, the power deposition has a peak for u/w - 3, and it 

goes to zero for very small or very large u/w. For small u/w the skin depth is approximately 

c/wpe. For large u/w the real and imaginary parts of Q are approximately equal, and the 
field oscillates as well as damps in space. 

The appropriate collision frequency for the electrons is found by averaging over the 
velocity distributions of the electrons and the particle type with which they are colliding. 
In these slightly ionized plasmas the main effect on the electrons is due to collisions with 
neutrals. The average is taken over the electron-neutral collision cross section, ane, and the 
relative particle velocity, v, 

"ne = n n K  = nn < ane(v,)v, > 
= J dvedvnfe(ve)fn (vn) ane (vr)vr (5.15) 

Neglecting the velocity of the low temperature neutral gas particles and assuming the elec- 
trons have a Maxwellian velocity distribution, the rate constants, K, can be found given 
the cross sections for various types of collisions. These assumptions are certainly consistent 
with the fluid description being used above. As an example, the rate constants for Ar versus 
electron temperature, as compiled by Vahedi[vah93], are shown in Fig. 5.2. 
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5.2.2 Collisionless Heating: Half-Infinite Plasma 

As shown by Fig. 5.2, at a neutral pressure of 2 mTorr and an electron temperature 
of 2 eV the collision frequency in Ar becomes less than 10 MHz. As a result low pressure 
reactors operating near 10 MHz can have an electron-neutral collision frequency less than the 
driving frequency. Under such conditions collisionless or stochastic heating of the electrons 
can be greater than collisional heating. 

The phenomena of collisionless heating in the ICP is basically the same a$ that 
of the anomalous skin effect in metals. Electrons in the conducting medium pass through 
the skin depth and are stochastically heated. Heating is significant for those electrons 
that reside in the field region for a time short compared to the field oscillation period or 

6/vth < w-l. These electrons receive a transverse kick since the inductive Efield remains in 
one direction over the time of the electron transit of the skin depth. Two analytic solutions 
for the collisionless heating shall be described. The first simpler theory, introduced by 
Wendt[wen93] and quantised in Liebermann[lie94] and Vahedi, et. al.[vah94], considers the 
effect on a single electron reflecting off the driven wall and then averages over electrons of all 
phases. This method is presented since it lends itself more easily to some 2-D collisionless 
results presented in section 5.4. 

As before consider a transverse field incident on a plasma slab but assume a field 
profile of the form Ey(z) = E,ezp(-z/b). Electrons travel toward the driven wall beginning 
at time tl, reflect at t = 0, and move away from the wall over time t2. To determine 

heating consider only electrons which reflect off the wall, and assume negligible change in 
an electron's velocity normal to the wall, v,, during this period. In other words collisions 
are neglected. For a time harmonic field the change in the electron transverse velocity is 

AUey = - ' f 2  Eoevzt~6sin(wt + 4,)dt 
me ti 

(5.16) 

where 4, is the phase of the electron. Because of the exponential decrease in -Ey(%), let 
tl 3 -00 and t 2  + 00. Integration results in 

(5.17) 

Given the energy gain of $mAu& and averaging over all phases, the average energy gain of 
electrons with velocity v, is found as 

(5.18) 
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The power per unit area taken by the electrons back into the plasma is found by 

averaging over the distribution of the electron flux reflecting off the wall 

Sst = Jm dvy Jm dv, 1°3 dux < A€ > vxfo(vs,vy,v,). 
-03 -03 

For a Maxwellian distribution the result is 

where 

(5.19) 

(5.20) 

(5.21) 

and 
Transit t ime of an electron across the skin depth ) . (5.22) 

Note that as cr becomes large (2 lo), Isim(Ct) 21 l/(ncr2), and the heating monotonically 
decreases. The bulk of the electrons are moving too slowly to interact stochastically with 

the field. They simply oscillate back and forth with no net gain in energy, and the kinetic 
heating is small. In the other extreme of small cr Isim(Q) = n/2, and stochastic effects are 
significant. The earlier fluid theory result can be added to this result to get an estimate 

for the magnitude of the total heating. The coupling of these two results works best for 

(y = - 1 (->" 6w = ( 
2 vth RF period 

plasmas which are either in the collisionless o r  collisional regimes. Such an approach is 
more approximate in the intermediate regime where neither effect is dominant. Though 
this theory gives an estimate for the regime where collisionless heating is maximized, a 
value for 6 must still be found to get the magnitude of the heating. 

The following is an outline of the derivation of the complete kinetic result which 
is correct for all v / w  and can provide an estimate for the 6 of the simple theory. Reuter 
and Sondheimer derived the l-D kinetic theory for the effect in metals[reu49] while more 
recently Weibel[wei67], Ichimaru[ich73], and Batchelor, et. d.[bat93] have made the changes 
necessary for the plasma case. Again begin with Eqs. (5.3) and (5.4), but instead of Eq. 
(5.5) the linearized Boltzmann equation is used 

(5.23) 

where f1 (x, v, t )  and fo(x, v, t)  are the perturbed and equilibrium particle distribution func- 

tions respectively. The collision term on the right results from the Krook model[kra86]. A 
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Maxwellian distribution of uniform density is assumed for fo. This equation is a first order 

ordinary differential equation which can be solved using an integrating factor. The solution 
(2) for f1 has two forms: ff' when v, > 0 and fl when v, < 0. The functions are determined 

with the boundary conditions: 1) for v, > 0, f:" must be finite as x + -m and 2) the 

electrons specdarly reflect at z = 0 so fi (vxy vy, v2, z = 0) = fi (-vxy q,, v2, z = 0). (2) (1) 

Given the resulting functions, the current density is found from 

Jy(x) = - e /  dvvyfl(rc,v). (5.24) 

Using this JY with Eqs. (5.3) and (5.4) yields, after some manipulation, the ratio of the 
fields at the plasma surface 

(5.25) 

The variable p is the square of the distance a thermal electron travels in an rf cycle divided 
by the collisionless skin depth, or 

(5.26) 

It is closely related to the inverse of Q derived in the simple collisionless theory. K(t) is 
a function dependent on the unperturbed electron velocity distribution function. For a 
Maxwellian plasma we have 

2xe-x2 K(t)  = Srn dxt3[(1 + (xt)2) tan-yxt) - xt]. 
0 

The power into the plasma is 

(5.27) 

(5.28) 

The integral I of Eq. (5.25) can be solved numerically giving the values of By/Bz and Sz 
for a particular plasma. For large p when the particle transit time is short compared to an 

rf period, the analytic expressions 

and 

(5.29) 

(5.30) 
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are found. The power deposition has become independent of the collision frequency. 
The S, of Eq. (5.28) can be set equal to Eq. (5.20) to find the necessary bsim 

for the simplified theory. The result for large p is bsim = . 3 7 ( v t h 2 / ~ ; ~ ~ ) ~ / ~ .  Assuming an 

exponential form for By(z) = E,ezp[(a + i b ) ~ ] ,  a skin depth can be derived from Faraday's 

law 
aEY - iw B, 
- dX - -,(E,)Ey- 

This results in 

(5.31) 

(5.32) 

There is also an oscillatory variation in EJz )  since b = a/&. Since 6eq # bsim, the 
assumption in the simple theory of an exponential drop in EJz )  is not quite right. The 
simple theory, however, does maintain the essential physics, a finite skin depth region which 
the faster electrons traverse in less than an oscillation period. The important result is that 
6Sim adjusts itself to give the correct heating rate when Eqs. (5.20) and (5.28) are set 
equal. Significant deviations should only occur when the skin depth is not much less than 
the plasma width or the spatial oscillations in By(%) have much smaller wavelengths than 
the skin depth. The simple theory will be used in section 5.4 to determine trends in a 2-D 
configuration. In addition section 5.2.3 gives information on the actual spatial variation of 
Ey so we can determine when the simple theory is applicable. 

Figure 5.3 is a comparison of the fluid and total kinetic theories for the power 
deposition into a plasma versus Y / W  for f = 10 MHz, T e  = 3.75 eV, ne = '2 x 10l1 ~ m - ~ .  
At low Y / W  the total theory indicates a leveling off of the power which is missed by the 
collisional theory and is due to collisionless heating. Since ICPs can operate where Y / W  5 1, 
the collisionless heating must be included or the power balance will be incorrect. The 
magnitude of Y / W  required for collisionless heating to be important depends on the value 
of p. Larger p pushes the anomalous region to larger Y / W .  

5.2.3 Collisionless Heating: Finite Plasma 

Several authors have investigated the attenuation of a transverse electromagnetic 
wave in a kinetic plasma of finite extent[wei67], [rey69], and [ble70]. The theory was even 
extended to plasmas with an assumed parabolic density profile[ble73], [jo176]. In these 
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papers the theory was tested with experiments on cylindrical plasmas driven by currents in 
coaxial solenoids~ol76]. In such plasmas the electrons entering the skin depth and reflecting 
off the wall can return after reflection off the opposite wall. If the electron mean free 
path is significant compared to the plasma dimensions, the electrons' velocities will not be 
randomized between passes through skin depth regions leading to interference effects with 
previous kicks to the transverse velocity. The plasmas studied are either a slab with Eg 
antisymmetric about x = 0 or a cylinder with no azimuthal variation in Eo. For the slab the 

electrons are specularly reflected at x = f a ;  however, with the Efield boundary condition 

this is the same as plasma entering the problem from 1x1 > a. This makes the problem 
infinite and periodic so the defining functions can be expanded in Fourier series. 

The results for Eg, B,, and Jg axe 

and 

where 

4 . ~ ~ ( 5 )  = -2aiB,exp(iwt)- 1 s in(nr /2)  sin (y) , x i ,  n2 r2 n=o& 

CBU nrx 
2an J J ~ )  = --exp(iwt) (L) 1 + E  sin (y ) s in  (=) n=odd 

2a 
(-w + iv), ' = n d r v t h  

and 2 is the plasma dispersion function 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

The algorithm used for calculating these sums is similar to that shown in Appendix 
A for the dispersion relations. From Eqs. (5.33) and (5.34) we can fmd the power into the 
plasma, S,, and determine when the size of the plasma begins to effect the heating. Figure 

5.4 shows the change in 8 ~ S , ( ~ p / c ,  m / c E z  versus the width of the plasma and fi for 
two different collision frequencies, Y / W  = 0 and Y / W  = 1. 



Several features are apparent on these contour plots. In both cases the heating 
converges to the half-infinite plasma result for a N 10wpe/c. For the collisionless case a peak 
in the heating occurs as U p e / c  varies for constant p. The peak is due to electrons which 

bounce back and forth across the slab in phase with the driven %fields. If they always see 
the same sign for fields on either side of the slab, they will continually be accelerated in the 
y direction. The maximum heating falls close to the line across the plot satisfying 

(5.39) 

which is the requirement for (I v, I )  of a Maxwellian distribution to be in phase. As ac/wp, 
becomes very small the plasma becomes smaller than the skin depth, and the electrons are 
no longer in phase with the oscillation so S, falls to zero. 

For v / w  = 1 the collisional heating dominates for smaller p. In the small p region 
the contour lines are nearly straight vertical lines down to W p e / c  < 3 indicating that 
the collisional heating reaches the half-infinite result for plasmas only a few skin depths 

thick. This is expected given the local nature of the collisional heating. For larger /3 the 

collisionless effects once again become important as evidenced by the small change in the 
heating between Fig. 5.4a and b near a= 5. 

Another useful result of this theory is the prediction of the spatial variation for 

the fields and current density. The theoretical spatial dependence of the current density for 
the defined plasma with half-width u p e / C  = 25 is shown in Fig. 5.5a. As surmized in the 
previous section, the current density does not have an exactly exponential fall, and does 
oscillate before reaching zero. In fact given that J has a real and imaginary part, the shape 
of the current density also changes with time. With these caveats in mind we see that the 
basic picture of the current density and fields falling off monotonically within a skin depth 
is a reasonable approximation, and the simple collisionless theory is applicable as long as an 
appropriate effective skin depth is used. The result from a 1-D DADIPIC simulation with a 
slab driven on only one side is shown in Fig. 5.5b. Results from simulations are expanded 
in the next section. This plot is given to show the same type of oscillatory behavior in a 
nonsymmetric drive and the agreement between simulation and theory. 
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5.3 l-D Simulation of Collisionless Heating 

A number of l-D simulations compare DADIPIC’s ability to reproduce the above 
analytic results. Equation (5.25) can be solved numerically for small v to find Ey/Bz in 
the collisionless limit. It is more convenient to consider the integral I which depends on the 

dimensionless parameter /3 without the proportionality to a particular 21th. Figure 5.6 shows 

the real and imaginary parts of I /  I I l 2  vs /3. Notice that at small p ,  Re(1) << Im{I}. The 
effective resistivity, dependent on Re{l} ,  is small compared to the inductance, dependent 

on Im{I}, and the electrons simply oscillate in the field without gaining net energy. As p 
increases the resistive component accounts for a progressively larger proportion of the total 
surface impedance. These simulations are similar to those of Turner[tur93] except without 
collisions only collisionless heating was investigated. On the other hand, Turner was limited 
to smaller plasma sizes, much finer discretization, and l-D simulations because of reliance 
on an explicit PIC code. Extension to 2-D simulations would be even more difEcult without 
DADIPIC. 

In the simulations conducting walls are placed at the minimum and maximum 
boundaries in x as shown iq Fig. 5.7. Electrons are specularly reflected off of the walls while 
ions are defined as a stationary neutralizing background. The electron particle number is 
16384, and temperature is 3.75 eV. The total problem length is 14 cm with AS of .14 
cm. Ax is chosen to give reasonable resolution of the skin depth which is around 1.5 
cm for these simulations. A time-harmonic, solenoidal Efield is imposed on the wall at 
x maximum. While Turner investigated the relative importance of collisionless heating 
with respect to collisional heating, our interest is the change of the surface impedance 
for a collisionless plasma vs p. To vary p between simulations both the plasma density, 
1011cm-3 to 3 x 1011cm-3, and the frequency of the imposed Efield, 3.33 MHZ to 20 MHz 

were varied. These densities and frequencies are typical of those in actual plasma processing 
reactors. The spatial and temporal discretization for the 1011cm-3 density is Ax/X*, = 31 
and w,,At = 9. These values are chosen, as usual, to minimize any numerical heating or 

cooling. 
Among the quantities measured were and Bz at the driven wall as well as 

the change in the total thermal energy of the electrons, AEth. With this information the 
components of I resulting from the simulations with their various p’s can be found. The 
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real part is 

(5.40) 

T is the time over which AEth is measured, and A is the effective surface area of the driven 
wall, .14 cm2. The magnitudes of E;' and Bz along with Re(1) give Im(1). 

(5.41) 

The results for the simulations appear as As, dots, and circles in Fig. 5.6. The results 

for both the imaginary and real parts of I are within 5% to 20% of the analytic solution 
over an order of magnitude change in p. These results are not in perfect agreement, but 
the discrepency appears correctable with finer resolution in the simulations. More particles 
would also decrease the numerical heating/cooling and the noise floor in the simulations 

due to fluctuations. 
Because of the noise level, the driven Efield had to be set at a minimum level 

in order to reliably discern the change in total particle energy. For this reason the driven 
fields are not arbitrarily small and second order effects on the heating due to the B-field are 
apparent. In fact two sets of heating simulations were run one set with the B-field turned 
off (the As in the plot), and one set with the B-field (the circles and dots in the plot). Of 
course, Im{I}  could not be calculated in the simulations without a B-field. The heating in 
the simulations without the B-field was consistently within 10% or better of theory while 

the other simulations could be off by over 20%. Before delving further into these B-field 
effects it is instructive to consider the numerical soundness of the DADIPIC simulations. 

Though the numerical heating is small, < I%, the inductive heating is only about 
10% of the total initial particle energy. Numerical heating was measured in simulations 
without driven inductive fields but with all other parameters the same as simulations with 
driven fields in order to account for the numerical heating. The amount of numerical 
heating or cooling was then subtracted or added to the inductive heating results. This is 
only an approximate correction since the rate of numerical heating changes as the total 
thermal energy changes. In fact some simulations were repeated without the electrostatic 
field. Since these simulations involve a warm, uniform plasma, any unphysical clumping 
should be prevented by the thermal motion of the particles. Those simulations without the 
electrostatic field confirmed the previously calculated heating rates, and showed that the 
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implicit electrostatic field was not affecting the v, distribution. Bulges in the distribution, 

described below, grew with or without Eirr indicating that Esol was the cause as opposed 

to some numerical effect. This confirmation of the calculations with the electrostatic field is 
important because 2-D, nonuniform plasmas must be simulated with the electrostatic field 

included. 
Other improvements to the simulations would be finer resolution of the skin depth 

and a longer simulation region to better approximate a half infinite plasma. Even though 
better agreement may be possible, the accuracy of these simulations using only modest 
resolution is encouraging. The resolution presented above is typical in 2-D simulations 
given finite computer resources. This gives us confidence that DADPIC can correctly 
predict the anomalous skin effect in more convoluted 2-D geometries where analytic theory 

cannot be applied. 
An interesting feature of the electron heating in both the 1-D simulations of this 

section and the 2-D simulations of section 5.6 is the significant amount of heating occurring 
in v, as well as vy. In fact, almost all of the heating in the 2-D case occurred in the v, 
and vz distributions. Time histories of the change in electron thermal energy in the x and 
y directions for a ,O = 10.64 simulation are shown in Fig. 5.8. Given the small magnitude 
of Esol in comparison to B,, the force on a thermal electron due to the B-field is the same 
order of magnitude as the force due to the Efield (1E1/1B1 N vth/c N 3 x The B-field 
itself cannot cause heating of the electrons, but it can convert the heating in vy into changes 

in v, and vz. Heating in only the y direction for simulations with the B-field turned off, as 
shown in Fig. 5.8b, confirms these hypotheses. 

The electron distributions are flattened near v, =. 0 and bulge near v, = vth 

indicating that the slow particles in the x direction are picking up energy. This is a clue to 
the cause of heating in the nondriven direction. Those particles with small v, spend more 
time in the skin depth region. These particles are accelerated most in the y direction by 
the driving Efield, and B, changes their trajectory decreasing vy and increasing us. The 
vg distribution is replenished because of the stochastic heating. For lower field magnitudes 
the results appear to remain close to the 1-D linear kinetic theory even though much of the 
heating shows up in a direction normal to Ey. 

For large enough B-fields some of the electrons are turned around before striking 
the wall. They do not receive the full kick from the.Efield, and the heating becomes less 
than expected for the given field magnitude. In other words the pondermotive force excludes 
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those electrons with the greatest velocities in the direction normal to the wall. These are the 

very electrons which are participating in the stochastic heating. Such a process is studied 
by Cohen[coh94] where he finds the instantaneous flux reaching the wall to be 

(5.42) 

This result is found by assuming the ratio of the magnetic force to the electric force is v/w6. 
Wce is the instantaneous cyclotron frequency at the wall. To find the average flux to the wall 
we can average Eq. (5.42) over an rf cycle, (re), assuming a sinusoidal time dependence for 
the B-field magnitude. 

To measure this effect several simulations with np = 2 x lo1' cm-3 and f = 10 MHz 
(p  = 10.64) were run. The Efield was varied from .dol StatV/cm to .012 StatV/cm. The 
results in terms of S = I/ I I l2 versus the oscillation velocity, vosc = qE/mw, are shown as 
circles in Fig. 5.9. The real part of S, representing the heating, closely follows the decrease 
in (re)/re0 which is the line in the Fig. 5.9a. The decrease becomes greater than 50% as 
vosc/vth becomes greater than .5. At about vosc/vth = l., Im{S} begins to decrease from 

the small field value. Here the average plasma velocity in the direction of the driven field, 
contributed to most by particles with small velocities in the wall normal direction, is large 
enough for I E I / I B 1- V/c. The current is then deflected from the transverse direction. 
Since the source for B, is the transverse current, the B-field no longer increases along with 
the Efield, and the I E I / I B I ratio begins to decrease. Note that these B-field effects are 
occurring for Efields less than .012 StatV/cm or 3.6 V/cm which are average fields for ICP 
sources. 

5.4 2-D Simulation of Collisionless Heating 

The importance of 2-D effects will be shown in this section. Change the uniform 
plasma slab simulations of section 5.3 by allowing a spatial variation of the driven field in 
the z direction so 

E&, t )  = Eocos(kzz)sin(wt). (5.43) 

If the wavelength is long enough, no 2-D effects should be present. The average power 

deposited per unit area should be half that for a spatially uniform field since (P) 0: (E:). 
DADIPIC simulations were run with a sinusoidal spatial variation of the driven Efield as 
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shown in Fig. 5.10. A 32 x 32 grid was initialized with 50000 electrons and a neutralizing 
background charge. The region has reflecting, conducting walls at xmin and xmax, and it is 
periodic in z. The plasma properties are np = 2 x 10l1 ~ m - ~ ,  Te = 3.9 eV, Ax/Ao, = 152., 

and w,,At = 45.4. The region is 15 cm wide with Ax = .5 cm and a skin depth of N 1.5 cm. 
The driven frequency of 5 MHz and Eq. (5.26) give a ,8 of 11.1. As done before in l-D, 
simulations were run with and without the B-field. To confirm that no numerical problems 
surfaced with the switch to 2-D, simulations with an Efield driven uniformly dong the wall 
at zmui~. with the B-field turned off resulted in 87rS,n0B/cE; = 209 compared to 191 from 
Eq. (5.25). This indicates accuracy approximately the same as the earlier l-D simulations. 
A simulation with Eo = .004 statV/cm and the B-field gave 87rSfo/cE; = 87.3 showing the 
previously seen B-field effect. 

The rest of the simulations were run with k, = 27r/(zmuz - zmin) and the same 

Eo. The wavelength was varied by changing zmuz - zmin. In order to avoid numerical 
heating, the electrostatic field was not used. As with the l-D calculations, any unphysical 
clumping should be minimal given the warm, uniform plasma. The simulation results are 
shown in Fig. 5.11. The As are simulations with no B-field, the dots are simulations 

including the B-field, and the dotted horizontal line was the IC, = 0 case with the B-field. 

All results are normalized to the k,  = 0 case without the B-field. 
One might expect the simulations with kz # 0 to have absorbed powers of Sxk = 

Sz0/2. Since the variation of the field in z would prevent particles with a drift in z from 
receiving a uniform kick, sxk would be expected to drop off even further for wavelengths 
on the order of the skin depth. As shown in Fig. 5.11, for short wavelengths this is the 

case, but for a significaht region does approach S,,/2 as 
the wavelength becomes very long. A clue to the unexpectedly large values of Szk lies in 
the position of the peak in SZk. The wavelength is - 15 cm, and in these simulations 
27rvth/w = 10 cm. A particle in the skin depth region with vZ - 0 and v, - vth would be 
in phase with the driven Efield, and it would receive a continuous acceleration from .Ey. 
Besides the mechanism of sampling the field for a short time and receiving a transverse 
kick, electrons may also be gaining energy by being in phase with the surface wave- This is 
a new spatial effect. An effect of comparable importance to the effect described in section 
5.2.3 due to resonance of the particle as it crossed the plasma slab. 

is greater than Sz,/2. 

This new effect is even more pronounced in the simulations with the B-field in- 
cluded. These runs have driven fields large enough to cause the exclusion of electrons from 



104 

the skin depth as discussed previously. With the addition of nonlinear, kinetic magnetic 
effects the non-uniform heating even surpasses the uniform heating for certain wavelengths. 

The z variation in the B-field must be sufficient to allow enough electrons back into the 
skin depth, causing the combined heating mechanisms to be greater than the single heating 
mechanism of the uniform drive. 

The wavelength dependence of this effect can be analyzed with a slight change to 
the simple collisionless heating theory of section 5.2.2. If the resonance with the surface 

wave exists, including v, in the theory should give a wavelength dependence similar to that 
of the simulations. Assume the field has the form 

Over one rf period the change in velocity for an electron is 

(5.45) 

where the electron starts at (x, z) with some vz and with 21, - 0. After integrating we find 

(5.46) 

where 

1 (5.47) 
(b  + 2m)sin(7T(b - 2 7 4 )  - ( b  - 27rs)sin(n(b + 2 7 4 )  A =  

(b + 2 ~ s ) ( b  - 2 7 ~ ~ )  

b = Lw/vth, and s = v,/vth. The change in energy is A€ = $mAugy. To get the average 
change in energy per unit surface area, we average over space and the velocity distribution. 
To get an average over v,, we assume the theory applies to those electrons which move less 
than a skin depth in x over an rf period or v,/vth < w6/2nvth. The resulting integral is 

(5.48) 

The power deposited per unit surface area is Eq. (5.48) divided by the rfperiod. The result 
is 

(5.49) 
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A reasonable estimate for 6, - 1.5 cm, is found from the l-D theory. The particular plasma 
properties give b, and the integral can be evaluated numerically. The result is included in 
Fig. 5.11 as the dashed line. The match with the simulation data gives credibility to the 
surfaxe wave heating hypothesis. This result leads to greater heating for the same current 
and, therefore, a larger plasma resistance. 

5.5 Collisionless Heating in a 2-D Idealized ICP Reactor 

5.5.1 Simulation with Stationary Ion Background 

The configuration of an idealized 2-D ICP reactor, simulated to observe collisionless 
heating effects, is shown in Fig. 5.12. The region to the left is the plasma. The electrons 
are particles while the ions are again represented as a uniform, stationary background of 
positive charge. The same sheath boundary condition as used in previous simulations (ie. 
all electrons specularly reflected at the walls) confines the electrons. 

The four bounding walls of the reactor are conductors. The two internal structures 
on the right are current driven antennas which have peak currents in each of 13 A oscillating 
at a frequency of 10 MHz. The structure between the antennas and the plasma is a dielectric. 
The plasma density is 10l1 ~ m - ~ ,  and the temperature is 4.65 eV. The time step, At = .5 ns 
(upeat = 8.9), and spatial discretization, Az = .14 cm (Az/Aoe = 27.6), were chosen after 
simulations without driven fields bracketed the numerical energy conserving contour. 

Figure 5.13 shows the structures of the reactor with superimposed contours of 
Eylsol at its maximum. Eylsol peaks between the driven antennas and falls off due to the 
conducting walls and the plasma. Eylsol drives a Jy in the plasma as evidenced by the 
circular pattern of the B-field vectors in Fig. 5.14. The B-field is not quite zero at the 
Efield peak because the driving antenna currents were gradually ramped up. This leaves 
an initial offset of the current out of phase with the oscillation. 

As with the l-D runs the kinetic energy of the electrons increased due to col- 
lisionless heating (see Fig. For these plasma parameters p is 1.65 which gives 

I .Ey [ / I B, I= 3.6 x from the analytic theory of Eq. (5.25). At the center of 

the dielectric window on the plasma side, I Ey I= 8 x statV/cm and I B, I= 3.3 gauss 
which gives I By I / I Bz I= 2.4 x showing some effect of the 2-D geometry. It is 
the power density into the plasma that is greatly affected in ZD. From analytic theory the 

5.15). 
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power is 5.8 x lo6 erg/cm2s while the measured power divided by the area of the dielectric 
window gives 4.2 x lo5 erg/cm2s. The differences occur because of the decrease in Esol 
near the bounding conducting walls in z and the finite extent of the plasma in x. This is a 
combination of the effects discussed in sections 5.4 and 5.2.3. 

5.5.2 Simulation with Sheath and Plasma Absorption at the Walls 

As a culmination of this investigation, this section presents a reactor simulation 
with mobile ions and absorbing walls in order to get a qualitative feel for DADIPIC’s 
handling of the total reactor simulation. Collisions and an external circuit will not be 
included, but the reaction of DADPIC to nonuniform plasma with internal structures and 
driven currents will be seen. The ion to electron mass ratio was set to 100 which allows a 
quick relaxation to equilibrium. 

As mentioned in chapter 3, a sheath boundary condition is used to minimize any 
anomalous capacitive heating. Since the plasma is collisionless and not driven capacitively, 

the static collisionless sheath result[ton29], [se163] is used as an estimate for the sheath volt- 
age. At the edge of the sheath the ions have approximately reached the Bohm velocity[for88], 
UB = ,/-. For a plasma where the sheath is narrow compared to the plasma width, 
the sheath potential is approximately[for88] 

(5.50) 

The width of the sheath is around 5 to 10X~, which is significantly less than the cell width 
in the simulation. 

Our simple unresolved sheath model has a form based on the requirement for equal 
ion and electron currents to the walls at equilibrium. Each conducting wall node has a given 
potential, q5(i,j). A sheath voltage, V,, is defined as the difference between the voltage at 
the beginning of the sheath and the most positive wall node voltage, &m. As shown in Fig. 
5.16, the various wall nodes may have different voltages resulting in larger potential drops 
near nodes with more negative potentials. A charge neutral plasma is initialized in the 
simulation. Since the electrons escape faster, the plasma rises to a positive potential with 
respect to the walls. When the average ion velocity reaches the Bohm velocity, UB, at the 
edge of the plasma, a sheath is assumed to have formed which causes equal ion and electron 
currents out of the plasma. At each wall node the ion current density at the wall, Ji, is 
given by nim(i,j)u~,im(i,j). The electron current density, Je, reaching the wall through 
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the sheath is estimated as the outward flux from a Maxwellian distribution at the electron 
density of the presheath, 

= c&ene(i,j) exp(-eV,/&Te). 

Thus escaping current density has been reduced by the potential drop in 

(5.51) 

the sheath. The 

total escaping ion and electron currents are found by summing over all the wall nodes. 
Equating these escaping currents, results in 

The potential drop in the sheath is 

(5.52) 

(5.53) 

If the ion velocity falls below UB at time step n + 1, V, is slowly ramped down 
using T/Sn+l = aT/Sn where Q - .9 works well. Notice that V, has been reduced by the Bohm 

potential to allow formation of the presheath in the simulation. This helps prevent the 
estimated V, from being too large and retarding too many electrons. The resulting collapse 
of the charge imbalance would eliminate the presheath potential drop, and the ions would 
no longer accelerate to UB. At this point the algorithm would drive V, to zero, resulting in 
a numerically noisy, large change in V, that is undesirable. 

Once V, is known, boundary conditions for the fields and particles must be deter- 
mined. The potential given by @(i , j )  = V, + $ma - $( i , j )  is the potential at the plasma 

side of the sheath at node ij.  @(i,j) is the Dirichlet value set for node i j  in the implicit 
electrostatic field equation, Eq. (2.7). After solving Eq. (2.7), the Efield normal to the 
surface is found with the first order differencing 

$(idel,jdeZ) - @(i , j )  
A El ( i , j )  = - (5.54) 

The node inside the plasma next to the surface node is at idel and jdel, and A is either Ax 
or Azdepending on the normal direction to the surface. 

The particle boundary condition depends on the particle type and energy. Since 
the sheath accelerates ions, any ions which pass through a structure boundary axe absorbed. 
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Those electrons which have a velocity toward the wall greater than ,/2e@(i,j)/m, are also 
absorbed. All other electrons are specularly reflected by the sheath. 

The generation of plasma through ionizing collisions is modeled by a uniform 

injection of electron/ion pairs across the plasma region. The velocity distribution is obtained 

by the standard Monte-Carlo technique for generating a Maxwellian distribution 

(5.55) 

where the & are random numbers between 0 and 1. In this way a Maxwellian distribution 
is injected in y, but a minimum speed, U I I ,  greater than zero is ensured in the x,z plane. 
Since only the tail electrons are lost through the sheath, the injected electrons must have 
enough energy to get over the sheath. This maintains particle balance keeping the plasma 
density constant. 

The system will reach equilibrium when particle balance and power balance is 
reached as explained in section 5.1. The flux lost to the walls can be estimated from 
collisionless analytic theory [for881 and get a particle creation rate from the particle balance 
equation 

~KT, Surf aceArea 
g = . 6 8 8 n e / G  Volume (5.56) 

Since the particles injected do not exactly replace the tail in the Maxwellian, this creation 
rate will not initially maintain a constant plasma density. The plasma temperature will 
also change as the energy lost by particles absorbed at the walls balances with the energy 
injected with the created particles and gained by the electrons through stochastic heating. 

The same simulation as specified at the beginning of this section was run with the 
addition of the sheath boundary condition and volume injection of particles. The simulation 
was run for 500 ns, five rf periods, to observe the evolution of the system. The electron 
density and potential profiles in the plasma are shown in Figs. 5.17 and 5.18. As expected, 
the plasma has risen to a positive potential, and the electron density follows the shape of that 
potential. The density has changed only &20% from the initial 10l1 ~ r n - ~ .  Both the electron 
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and ion particle number in the simulation decreased - 20% from their initial number of 
30000. The noise due to particle fluctuations is evident in both plots. Notice, a Dirichlet 
zero boundary condition has been imposed on 4 for all nodes outside of the plasma region. 

The solenoidal Efield, resulting from current driven in the antenna structures, is shown in 
Fig. 5.19. It maintains a significant magnitude right up to the conducting surfaces in the 

vacuum but is falls off quickly in the plasma region. The magnitude of Esol fluctuations is 
quite small compared to the peak of the field. The field retains essentially the same shape 
as that in the uniform plasma reactor simulation at the beginning of this section; therefore, 

the stochastic heating power absorbed should also be about the same. 
Particle energy time histories of Fig. 5.20 indicate that the plasma is approaching 

equilibrium. The electrons lost energy due to the decrease in their number and the energy 
given to the ions by the accelerating sheath. The average power lost to the walls was - 6 x 

lo8 erg/s while the stochastic heating reported in section 5.5.1 was - 1.7 x lo6 erg/s. Thus 
almost aJl of the power is being injected with the particles. Given the plasma parameters 
and field magnitude the collisional heating would have a maximum around 1.5 x lo7 erg/s. 

Obviously, much more energy is purposely being put into the particles than would 
be expected from the available heating processes. In.actual reactors the ratio mi/m, is 
larger (36720 for Ar) leading to much smaller flux (- .05) and thus power (- 2.5 x 

absorbed at the walls. In addition the ratio of surface area to volume is smaller resulting 
in a smaller ionization rate to maintain the same plasma density. ul could also have 

been set smaller, and the injected particles would still have enough energy to get over the 
analytic sheath barrier. For this reason the power to the walls would be much less than 
present in this simulation, and physical heating mechanisms would be more than sufficient 
to balance the power absorbed at the walls. This simulation simply serves as an example of 

DADIPIC’s ability to simulate all the relevant phenomena while allowing a quick relaxation 
to equilibrium with mi/m, = 100. Plus, the injected particles were intentionally given high 
energies to highlight some points about these types of simulations. 

In Fig. 5.21 is have a comparison of V, time histories from three different simu- 
lations. All three have similar plasma parameters, but the .first two are l-D with 14 cm 
lengths (100 cells) while the third is the 2-D simulation described above. The first has 50 
particles per cell, the second has 250 particles per cell, and the 2-D run has 32 particles per 
cell. V’ collapses occasionally in the two l-D simulations. The collapse of V, occurs when 
the ion velocity falls below UB. The drop below UB is due to fluctuations in the overall po- 
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tential profile which cause fluctuations in the ion velocity. The potential fluctuates more in 
the l-D simulations even though those simulations have more particles per cell because the 
global potential profile is determined by the difference between the total ion and electron 
numbers not the number of particles per cell. The number of particles per cell only affects 
the fluctuations from cell to cell which appears as noise superimposed over the general shape 
of the potential profile. 

For these three simulations, the average difference between ion and electron num- 
bers is 12, 120, and 680 respectively. To find the fluctuation in these numbers from time 
step to time step, consider the average number of particles for each species being absorbed 
at the walls each time step. For the three simulations these were 2.8, 14, and 64. Assuming 
a Gaussian distribution for the variation in these quantities (f the square root of the av- 
erage), we find that the particle differences can vary by f3.3, f7.5, and f 1 6  or fractional 
variations of f.28, f.063, and f.023. The large fractional change in net charge in the first 
simulation leads to significant changes in the potential profile which in turn causes the ran- 
dom drops in V,. Thus for meaningful simulations we must not only consider the number 

of particles per cell but also the net difference between particle species. 
The electron velocity distribution for the 2-D simulation of Fig. 5.22 along with 

the potential plot of Fig. 5.18 indicate some of the limitations of an analytic sheath bound- 
ary condition. The retarding potential is substantially larger than V,. The cause is the 
assumption in the unresolved sheath boundary condition of a Maxwellian distribution while 
the actual electron distribution is substantially different than a Maxwellian. A more sophis- 
ticated model could find the flux to the wall versus V, from the actual particle distribution. 
Assuming little change in the distribution from time step to time step, the distribution 
could be calculated only every few time steps (10 to 50). In this way the code would not 
be slowed from a velocity binning of the particles every time step. 

5.6 ICP Reactor Simulation 

Up to this point the DADIPIC method has been developed, implemented, and 
characterized as a te&que for simulating the particles and fields in a low frequency, ki- 
netic plasma. In this chapter it is shown that the method is ideally suited for the phenomena 

in ICP sources. Although these were the goals of the dissertation as stated in the introduc- 
tion, this final section was included to provide a road map to a complete ICP simulation 
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methodology with DADIPIC as the plasma/field solution algorithm. 

5.6.1 Simulation Methodology 

Many authors have developed models for ICPs over the years. The basic idea is to 
model the circuit driving the rf antenna and to couple a load representing the plasma to the 
circuit. The coupling and complex impedance of the load depend on the antenna and plasma 
geometries as well as the plasma properties. Most analytic models consider cylindrical ICPs 
driven by solenoidal or helical coils which allows the simplifying assumption of cylindrical 
coordinates with only radial spatial variation of quantities. 

The first step in determining the plasma impedance is to determine the field vari- 
ation in the plasma. In an early calculation Thomson[tho27] considered'a uniform plasma 
with a real plasma conductivity. Later authors such as Eckhert[eck62] and Henriksen, et. 
a,l.[hen7l] included finite collision frequency and assumed, nonuniform density profiles. As 
shown in the previous section, kinetic effects have been considered by several authors. A 
Recent analytic model has included the collisionless heating in nonuniform ICPs with a pla- 
nar coil; however, the results were obtained with an assumed, not self-consistent solution 
of the field profiles[vah94]. 

-. 

Once the field variation, driven current densities, and absorbed power aze de- 
termined as functions of rf frequency, density, temperature, and collision frequency, the 
corresponding resistance and inductance of the plasma can be found. Denneman[denSO], 
Godyak, et. al.[god94], and others have coupled the plasma impedance into circuit models 

for the whole ICP system by treating the plasma as a single turn secondary winding of a 
solenoidal transformer. This is a reasonable description for a collisional, cylindrical plasma 
with a small skin depth compared to its radius. The driven current exists in a thin annular 
region at the plasma surface (see Fig. 5.23). Given the models, experimentally measured 
currents and voltages in the driving circuit were used to find the plasma properties. 

More complex geometries and self-consistent calculations of plasma parameters 
require the use of computer models. Codes, which solve for electromagnetic fields given the 

positions of conducting and dielectric structures and the antenna frequency, have been used 
to find the field profile by assuming the analytic form for the plasma conductivity~op92], 
[hop93]. Codes are being developed to include the external circuit along with the actual 
reactor layout to determine power deposition[ste93]. Other codes model the plasma as a time 
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evolving fluid so the plasma density profile and temperature can be found self-consistently 
given the driving fields[dip94d]. All of the processes mentioned at the end of section 5.1 are 

included except stochastic heating. Another issue which must be dealt with in these codes 
is modeling the electrostatic sheaths[met86], [dip94a]. Discretization fine enough to resolve 
the sheath would be computationally prohibitive, and with quasi-neutral codes[dip94d] a 
true electrostatic field does not exist. 

One could include the stochastic heating with a kinetic code such as DADIPIC. 
The electron-neutral collisions can be modeled by adding a PIC Monte-Carlo Collision (PIG 
MCC) routine[bir91], [vah93] to the basic algorithm. Unfortunately, even the reduction in 
computational expense of DADIPIC over an explicit PIC code is insufficient for simulating 
these reactors to equilibrium. The ions are so slow that many hundreds of rf cycles may 
be required before equilibrium is reached. Since tens of time steps are required per rf cycle 
(irrespective of the plasma frequency), the cpu time for a particle simulation would be 

prohibitive. 
Attempts have been made to include the stochastic heating in analytic fluid models 

by equating the analytic form for power deposition in a fluid, Eq. (5.14), to the power 
deposition due to stochastic heating[vah94], [lie94]. Solving this equation for the collision 
frequency results in a vef f  to be used in the fluid model in place of the actual vne. While this 
approach obtains the correct value for the real part of the plasma impedance, it does not 
account for the change in the imaginary part due to the collisionless effects. So the driving 
will still have an incorrect loading. In addition the appropriate veff must be determined. 
A methodology is described below for using fluid and kinetic simulations in concert to 

overcome these problems and to model the ICP. 
The methodology involves two codes. The first is a time-dependent simulation 

code, CI, which allows arbitrary configurations for conductors and dielectrics along with 
the option for a fluid or kinetic description of the different species in the plasma. Proper 
boundary conditions for fields and plasma as well as an external circuit connected to the 
driving antenna are required. The external circuit is connected to the impedance shown in 
Fig. 5.23 where Zicp includes the plasma, the ICP reactor chamber, and the antenna. The 
power and circuit quantities are related through the equations 

(5.57) 

(5.58) 
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where R = Re{Z} and L = Irn{Z}. Since the DArwin Direct Implicit field solution 

technique is still valid when particles are replaced by fluids, the DADPIC method could be 

used for the plasma and fields in such a code. The advantages of DADPIC fields are gained 
without the computational overhead of particles. Another option is to use a quasi-neutral 
code which adds complications in dealing with electrostatic sheaths. 

CI is run in its fluid form to equilibrium. At this point the kinetic form is initialized 
with a frozen ion density background and electron particles with the correct profile and 
temperature. The electrons are reflected at the bounding walls, and only elastic collisions 
are included. In this way the power into the plasma due to collisional and stochastic heating 
can be measured as the change in kinetic energy of the electrons. The value of Zi, can be 
found from a calcdation which accounts for kinetic effects through the equations 

(5.59) 

(5.60) 

Now the second code, CII, which is a time-independent coupling code, is used. 
Timeharmonic dependences for currents and fields and a complex, collisional conductivity 

for the plasma are assumed. The plasma density and temperature again come from the 

fluid result of CI. The conductivity is taken to be 

(5.61) 

where a(v) was derived in section 5.2. With aeff two variables are available to change in 

order to match &, and Li, with the fluid description. The terms Veff and K are varied 
until the match is achieved. This tunes the complex impedance of the fluid plasma so it 
is equivalent to the impedance of the kinetic plasma. The spatial distribution of the fields 
and currents will be nearly the same. Certainly matching the complex impedance will be 
more correct than those methods which only match &,. The time-independent algorithm 

is used so that the IG and V e f f  parameter space can be quickly searched to find the optimum 
values. The search could be performed with a routine similar to the Monte-Carlo routine 
in appendix A used to find the root of the dispersion relation over the complex w plane. 

Now return to the fluid code. The values of K and Veff'are used in the fluid 
momentum and energy transport equations, 

(5.62) 
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and 

to get the proper 

2 2Q T +  v - (VT) - -TV-V = - 3 3n 
(5.63) 

effect on the fluid current and energy. Q is the heat generated due to 
collisions between unlike particles and contains the thermal conductivity and resistivity 
which depend on v e f f .  DiPeso, et. al[dip94d] gives a form for Q applicable for these types 

of simulations. K.  changes the magnitude of the force on the fluid caused by the Efield 
without changing the field itself. Note that we need only change the value of veff  and add 
IC in the direction of the driven field; thus, the diffusion and Efield force will be unaffected in 
the other directions. The force from the B-field and electrostatic field are never affected. In 
2-D the driven field is usually out of the simulation plane so vef f  would not affect diffusion 
in the simulation. 

We can again run the fluid code to equilibrium and repeat the whole process until 
the plasma characteristics show sufficiently small change. Initial estimates for K. and V e f f  

can found using results from the l-D kinetic theory of section 5.2. Such a process would 

allow us to find general trends in ICP reactors and to investigate the effects of novel ideas 
without the need to build and experiment with many different reactors. 

Another use of the kinetic portion of CI would be to determine the velocity dis- 
tribution of the electrons in the reactor. Given the result from the fluid simulation or 
given density and temperature profiles from an experiment, the kinetic simulation could 
be initialized with immobile ions. In this case the electrons are allowed to be absorbed 
at the bounding walls. Ionizing and excitation collisions with the neutrals are included in 
the PIC-MCC package in addition to the elastic collisions. Since the ions are immobile, 
the simulation is run only long enough for the electrons to reach an equilibrium distri- 
bution. The resulting electron velocity distribution could then be used to help diagnose 
experimental results or calculate corrected collision rates for fluid simulations. As befor an 
iteration between fluid and kinetic simulation would be necessary for the purely numerical 
investigations. For ion profiles obtained from experiment no further simulation is necessary. 

5.6.2 Example of Methodology using Analytic Theory 

In this section we will gauge the difference in the plasma impedance between a 

fluid and kinetic description for a uniform, cylindrical plasma. This will give us an idea of 
the magnitudes required for IC and V e f f  and the importance of collisionless heating. The 
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coupling analysis is similar to that found in Denneman[denSO], Piejak, et. al.[pie92], and 

Lieberman[lie94]. For simplicity assume the plasma radius, r, is much greater than the skin 
depth so the l-D Cartesian theory developed earlier can be used. A solenoidal coil of radius 

b with N turns is wrapped around the plasma. 

The power into the fluid plasma is given by 

A is the surface area 2nrZ, and Sx is given by Eq. (5.14). The current is 

(5.64) 

Equating the power of Eq. (5.64) to that of Eq. (5.57), we find the plasma resistance 

4n2ur 
%= w,z,sa.. 

(5.65) 

Since an N turn solenoid has the B-field 

4nNI Bz = - 
d '  

the inductance matrix components are[rei79] 

47r2b2N2 
cl 

4n2r2N 
cl 

Lll = 

L12 = L21 = 

4n2r2 
L22 = -. 

cl 
The voltages obey the equations 

Since I$ = -Ip%, the above equations give Zip = V,f/Irf. The result is 

1 1 
Ricp = %lV2 [ 1 + (.21Rp/(47r2r2w))2 

and 

(5.66) 

(5.67) 

(5.68) 

(5.69) 

(5.70) 

(5.71) 

(5.72) 
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Table 5.1: Impedance of the example ICP 

Li, V I W  K V e f f l W  $ j j l w  
- - 

RP 8, 
u only 6.47 x 1.62 x 1.402 x 10-l' .2 - 
K ,  u e f j  13.5 x 3.37 x 1.407 x 10-l' - 1.06 .439 

ueff 15.4 x 3.85 x 1.408 x 10-l' - - 
- 
.510 - 

The power including stochastic heating, SltoCA is found from eq. (5.28). Integrat- 
ing the current density Eq. (5.35), we find the corresponding current, Istoc. In this case the 
plasma resistance is 

We can find K and ueff  from 

and 

2- w4 Pe K ~ E ~  1262 

16r2 u:ff +w2 I Istoc I - 

(5.73) 

(5.74) 

(5.75) 

where 6 is defined by Eq. (5.13). If we simply tried to match the Sitoc with a v:ff, we 

would have used 

(5.76) 

This leads to a different I Istoc I and thus a different 
Consider the plasma of section 5.2 with np = 2 x 10l1 cmW3, f = 10 MHz, Te = 

3.75 eV, Y / W  = .2, r = 30 cm, 1 = 30 cm, b = 31 cm, and N = 5. Table 5.1 shows the 
results for the circuit when only collisional heating is included, when fluid theory is set to 
match Sztoc and and when fluid theory is set to match only Sitoc. 

As shown in the table, the inclusion of stochastic heating caused a factor of two 
change in &,. The use of K and Veff made a slight refinement in Zi, (- 15%) versus the 
use of v:ff alone. For this geometry I$ and the exact plasma current profile have little 
impact on Li,. For cases where 6 is significant compared to the reactor dimensions, the 
collisionless effects would impact Li, as well as &,. 
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5.7 Summary 

As we have seen collisionless heating plays an important role in the operation of 
ICP sources for plasma processing. Changes to the power absorbed by the plasma can 
affect the plasma density, uniformity, and sheath magnitude a l l  of which are critical when 
processing material surfaces. The DADIPIC method has proven its ability to simulate the 
collisionless heating in such reactors because of its correct modeling of the kinetic effects 
and its freedom from plasma frequency time step constraints. With DADIPIC we can 
investigate the nonlinear B-field effects which can reduce the heating even for driving fields 
typically found in reactors. New combinations of effects can be found such as the surface 
wave heating of section 5.4. Here the 2-D configuration and B-field interact leading to more 
heating than would otherwise be expected. 

Finally, it was shown that DADIPIC can serve as the core plasma/field algorithm 

which an ICP simulation code can be built around. PIC-MCC for collisions, an external 
circuit for the antenna, and a sheath model for the walls can all be added given DADIPIC’s 

inherent flexibility and ability to handle bounded plasmas. The field algorithm could also 

be used with fluids for the plasma species if even faster run times were desired. The kinetic 
simulation of these ICP sources would not be possible without DADIPIC’s combination of 
kinetic, low frequency, electrostatic, and magneto-inductive simulation. 
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Capacitive Reactor 

Inductively Coupled Reactor 

Figure 5.1: Idealized capacitively and inductively driven plasma reactors. The rf source 
drives electrostatic fields between the parallel plates of the capacitive reactor and induc- 
tive fields along the coiled antenna of the inductive reactor. The reactors are typically 
cylindrically symmetric. 
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Figure 5.2: Ionization rate constants (# cm3/s) in Ar versus electron temperature of a 
Maxwellian distribution fiom Vahedi[vah93]. 
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Figure 5.3: Comparison of the fluid and kinetic theories for the power deposition into a 
plasma versus u/w.  
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Figure 5.4 Contour plot of the power into a finite plasma slab versus the slab width, a, 
and the skin depth trapsit parameter, p: a) Y / W  = 0 and b) u/w = 1. The line across a) is 
for an electron with (I vz I )  = 2aw/7rr. 
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Figure 5.5: Current density versus position fcom theory and driven Efield versus position 
from DADIPIC calculation for finite plasmas. 
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Figure 5.6: The real and imaginary parts of I/ I I 12. The dots and circles are fiom 
simulations with the B-field while the As are for simulations where the B-field was turned 
Off. 
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Conducting Wall: 
Ey,sol=Eocos( at) 
Ay=O 

Eirr=O 
$=O 

Figure 5.7: Picture of the simulation region for the 1-D DADIPIC simulations of inductively 
couple plasma heating. Ey is specified on the conducting wall while conducting surface 
boundary conditions are used for all other field quantities. Electrons are specularly reflected 
off the walls. 
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Figure 5.8: Change in the electron thermal enera  in the x and y directions for 1-D sim- 
ulations: a) B-field included in the simulation and b) B-field not included. Essentially no 
heating occurs in the direction normal to the driven field without the B-field. 
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Figure 5.10: Picture of 2-D periodic simulations where the driven inductive Efield has a 
sinusoidal variation in z. 
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Figure 5.11: Results of the 2-D simulations with the spatial variation of the driving field 
parallel to the wall. The powers are normalized to the simulation with IC,  = 0 and the 
B-field turned off. Simulations without the B-field are As, simulations with the B-field are 
dots, and the simulation with the B-field and IC, = 0 is the horizontal line. Theory not 
including the B-field is the dashed line. 
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Figure 5.12: Picture of the 2-D inductively coupled reactor simulation. 
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Figure 5.13: Contours of Ey at the peak of Jy in the antenna in the 2-D ICP simulation 
with uniform plasma density. 
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Figure 5.14: Veetor plot of Bz,z (largest vector = .177 gauss) at the peak of the driven 
Efield in the 2-D ICP simulation. 
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Figure 5.15: Change in particle total kinetic energy (normalized to the initial energy) for 
the 2-D ICP simulation with uniform plasma density. 
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Figure 5.16: Assumed plasma potential proflle for calculating the unresolved sheath poten- 
tial, Vs. is the potential on the most positive conducting wall node. 
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Figure 5.17: Density (#/cm3) profile at the end of the 2-D reactor simulations with the 
unresolved sheath boundary condition and electron/ion pair volume injection. The reactor 
dimensions are in cm. 
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Figure 5.18: Potential (Volts) profile at the end of the 2-D reactor simulations with the 
unresolved sheath boundary condition and electron/ion pair volume injection. The reactor 
dimensions are in cm. 
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Figure 5.19: Driven Efield (V/cm) profile at the end of the 2-D reactor simulations with the 
unresolved sheath boundary condition and electron/ion pair volume injection. The reactor 
dimensions are in cm. 
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Figure 5.20: Time histories of the particle kinetic energies. The electrons loose energy as 
their particle number decreases and the electrostatic sheath builds. The ions gain energy 
falling through the sheath. At late time the energy levels off indicating the approach toward 
equilibrium. 
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Figure 5.21: Comparison of the unresolved sheath voltage time histories for simulations 
with average differences between ion and electron particle numbers of: a) 12 particles, b) 
120 particles, and c) 680 particles. The a) simulation has the most noisy V, even though it 
was a l-D simulation with the more particles per cell than the 2-D simulation of c). 
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Figure 5.22: Electron velocity distribution (dots) of the 2-D unresolved sheath reactor 
simulation compared to a Maxwellian distribution (line) at the same temperature. 
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Figure 5.23: Picture of the idealized circuit to model a cylindrical ICP as the one turn 
secondary of a transformer. 



141 

Chapter 6 

Conclusion 

A new algorithm, DArwin Direct Implicit Particle-in-Cell (DADIPIC), has been in- 
vestigated which shows great promise for simulating low frequency, electromagnetic plasma 
phenomena. This work has developed what will hopefully be only the initial incarnation of 
this method. The robustness of the method when applied to a wide range of phenomena, 
and the relative ease in handling boundary conditions argue for further investigation and 
implementation of the method. 

The positive characteristics of the method arise out of the Darwin limit .of Maxwell's 
equations with.its set of elliptic equations for the fields. Given this limit the Courant condi- 
tion for light propagation across the grid, cAt/Ax < 1, is eliminated. Numerically solving 
these equations has been made much more efficient through the use of the Streamlined 
Darwin Field (SDF) equations. With these equations we can use Dynamic AD1 to solve 
for the B-field, and Coupled Equation Dynamic AD1 to solve for the solenoidal part of the 
Efield. 

Though the Darwin method has been implemented numerically, it has never before 
been coupled with a particle implicit method for the electrostatic field. By using the Direct 
Implicit method for the electrostatic field, the constraint on resolving plasma oscillations, 
w,,At < 2, is removed. In this way the Darwin limit can be used economically in dense 
plasmas while retaining the ability to simulate electron kinetic effects. In its present form 
the algorithm uses the bi-conjugate gradient method to solve the implicit electrostatic field 
equation. 

A well defined numerical implementation of the method is of limited use with- 
out a measure of its performance. The discussions in Chapters,3 and 4 use linear theory 
and simulations to characterize the limits on spatial and temporal discretization for sta- 
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ble and accurate use of DADIPIC. The algorithm is shown to operate in agreement with 
linear theory. We found that the cyclotron frequency must be resolved, and the condition 
3vthAtlAx - 1 must be met to minimize numerical heating or cooling. Relatively unre- 
strictive guidelines were developed that allow the large space and time scale capabilities of 
DADPIC to be applied successfully even in circumstances highly stressful to the algorithm 
(ie. large density gradients, imposed magnetic fields, large electrostatic and electromagnetic 
fields). 

The separation of the field solutions into several elliptic equations adds a certain 
flexibility to the DADPIC method. The fields depend only upon the instantaneous values 
of the source terms which are calculated from plasma quantities. The fields are tied di- 
rectly to the plasma and carry no memory of the previous fields from one time step to the 
next. The method, therefore, is not limited to any specific algorithm for the time advance 
of plasma quantities. The Moment Implicit method could be substituted for the Direct 
Implicit method as the way of implicitly advancing particles. On the other hand fluid quan- 

tities stored on the grid and obeying fluid transport equations could replace the particles 
altogether. It doesn't matter how the plasma advances from one time step to the next as 

long a s  the source terms are available for the fields at the next time step. 
The use of elliptic equations also tends to decrease the noise in the fields caused by 

the finite number of simulation particles. This allows us to run more accurate calculations 
with the number of particles similar to an explicit code or to use fewer particles achieving 
similar accuracy in less cpu time. In addition with the separation of the field solutions, 
the different fields could be solved on different grids. As an example the characteristic 
scale length of importance for the electrostatic field may be signiscantly larger than for the 
magneto-inductive fields. In this case the electrostatic field could reside on a courser mesh 
reducing the cpu time required to solve for the electrostatic field. 

Of course, the method still has its limits. The particle push and field solution 
still take significant amounts of cpu time. As a guide to future investigations of DADIPIC, 
the following avenues might lead to improvements of the present algorithm. The use of a 
6f method for the particles, or spatial filtering of smaller wavelengths my reduce the noise 

of fluctuations and enlarge the region of energy conservation. When kinetics are required, 
of course, particles are required. However, the combination of kinetic and fluid simulation 
recommended in Chapter 5 may be a way of integrating kinetic effects into a fluid simulation 
without requiring particles over the whole simulation. 
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By redefining the finite difference operator to be aligned with the local B-field 

it may be possible to diagonalize the implicit susceptibility and regain a five-point finite 
difference template. The relatively fast Dynamic AD1 solution technique could then be 

applied to the implicit electrostatic field equation. For those phenomena where only the 

component of Esol out of the simulation plane is required, Ey can be found with Dynamic 
AD1 with no need for the slower CEDADI. DiPeso, et. al.[dip93] have shown a decrease in 
the computation time for CEDADI itself through the use of block tridiagonal methods. So 
the cpu time (3 s per time step on a Cray 2) for the test problem of Chapter 4 is not the 
minimum limit for DADIPIC. 

In the near term DADIPIC will be used to simulate inductively coupled and other 
collisional bounded plasma sources. The results of Chapter 5 highlight the method’s capa- 
bility to model bounded plasmas. The agreement with 1-D kinetic theory gives us an idea of 
the resolution needed for 2-D simulations, and the 2-D simulations show DADIPIC’s ability 
to model geometries similar to actual plasma processing reactors. The nonlinear geometric 
and B-field effects on collisionless heating emphasize the need for a low, frequency kinetic 
code since such results are not readily achieved with analytic theory or fluid simulation. It 
is this type of simulation which may lead to novel ideas for reactor configurations. 

One final point must be emphasized. Although a large portion of this dissertation 

was devoted to the phenomena in ICP sources, this does not imply any limit on the appli- 
cations of this method. With the algorithm adapted to a code which allows arbitrary 2-D 
structures, DADIPIC has the potential to simulate a wide range of bounded or unbounded 
low frequency, kinetic plasmas. The utility of the method lies in its inherent flexibility and 
unspecialized nature. 
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Appendix A 

Calculation of Dispersion 

Relations and the Spectral 
Density 

In this appendix the calculation of the dispersion relation, Eq. (3.24), and spectral 
density, Eq. (3.30), for the PIC plasma are discussed. The first step in this process is to 
find the ratio [X/A]. The deflection of a particle, xi'), from its zero-order orbit, x(O), at any 
time step n is given by the perturbing velocity, vn-1/2, added over all previous time steps 

n 

q=l 

In a similar manner the perturbing velocity depends on the perturbing acceleration which 
for this analysis is due only to the electrostatic field and has a harmonic variation. So 
ail)(x, t )  = E, exp(ik - xO)zn(k - vo - w )  where z(u) = exp[iuAt]. For an explicit scheme 

g=1 

Plugging Eq. (A.2) into Eq. (A-1), we find 

For the D1 implicit scheme the velocity depends on Zn = $(an+, (1)  + Zn-1) or 

n 

q=l 
vn+1/2 = A t x  5n-qt-l- 
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For the D1 case we find 

These functions are averaged over a Maxwellian velocity distribution as in Eq. 
(3.23), and included in the dispersion relation Eq. (3.24). The result for the D1 scheme, 
including spatial gridding effects, is 

(wpeAt)2 kp Z(k)S2(kP)X(kp, ~ ( w ) )  DD, (k,w) = 1 + K2(k) p 
- 

where z is now only a function of w. The function X(kp, Z ( W ) )  is 
n 

The notation for the sum in Eq. (A.6) is 

p p=--cos=--00 

and kp represents 

For the linear shape functions and second order finite difference operators used 

in this code, the form of the spatial functions in these equations is based around the 
function[bir85] 

The Fourier transforms of the various operators can then be written 

S2 (kp) = dif4 ( kpxAz/2)dif4 (ks,Az/2) 

Z(k) = 2kx dif(kxAz) +3k, dif(k,Az) 

K2(k) = k2 dif2(kAz/2). 

(A.lO) 

(A.11) 

(A.12) 

(A.13) 

Now we must calculate the sums, S, with an estimate for the residual, Rp.  The 

convergence test is 

abs(Rp) < etest 
abs(S) 

(A.14) 
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where etest is set to or less. The size of the remainder is estimated through the Cauchy 
integral test 

2 f p  < Im I f ( 4  I dx + fP+l (A.15) 
p=P+1 P+1 

First consider the function 

(A.16) 

Note for simplicity the approximation q + o has been made (an arbitrarily large number 
of simulation time steps). The following definitions are made: 

a2 = ( l ~ ~ ~ t h A t ) ~ / 2 ,  

b = -In1 I ,  
(Y = a(& + 1) - b/2~.  

If CY is negative, and the approximation is used 

lm exp[-u2]du < 6, 

(A.17) 

(A.18) 

(A.19) 

(A.20) 

then the remainder for q = Q is 

Notice, the remainder will not become small unless Q is positive. For a positive we c m  
make the estimate 

exp[-u2]du < -e 1 -Q2 . 
2cY 

In this case the remainder is 

2 2a2 2a2(Q+1) - b  
R Q < I ~ + ~  I {&+-+--[I+ 3 1  

(8.22) 

(A.23) 

The sum, Eq. (A.16), is carried out until Q is positive. After that the error test, Eq. (A.14), 
is applied each interation to the remainder calculated by Eq. (A.23). Once the error test is 

met the iteration is stopped. A recursion relation suggested by Langdon[lan79a] decreases 

the numerical work required to evaluate this sum over exponentials. 
After finding the X(kp,z(w)) terms for a particular kp the error in the sums 

over p must be estimated. The sum is calculated by adding the terms along the square 
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- l < p < l , s = l o r  - 1 , a n d - l 2 s 2 l , p = l o r  -1. Afterthistheremainderischecked. 
Using the Cauchy integral test as before, we find for the case of p + s > 0 

For this case let A = A x  = Az, kr = 27rl/A, and A,. represent the argument in the sum of 
Eq. (A.6). The double integral must exclude the region inside the square with sides of k,. 

or 

J J = . L z d k p L r  

+ Jm dkp I-" dk, + Jm dkp i; dk, (A.25) 
-03 -03 -03 

The remainder is estimated as four times the second integral in Eq. (A.25). 

(A.26) 

These error tests are, of course, conservative. Meeting them assures high accuracy in the 

calculation of the dispersion function, D(k,  w). 

We can give the dispersion function a particular k and find the complex w satisfying 
the root of the function. This determines the dispersion relation or normal modes for the 

numerical plasma. The roots are found using a simple, robust Monte-Carlo optimization 
algorithm. Given an initial square region in the complex w plane, the algorithm picks a 
number of points, j = 1,. . . , n, randomly within the region. It calculates the value of 
D(k,wj) at each of the points. The maximum, errmax, and minimum, errmin, value of 
D(k,wj) is found for each set of points. An error limit is set as 

errlim = (errmax + errmin)/2. (A.27) 

The value of err% is used to nanow the bounds on the real, w,., and imaginary, wi, 

components of the frequency. The lower boundary on each component is set equal to the 
lowest value of the component where D(k,wj) is less than errlim. The upper boundary 
on each component is set equal to the largest value of the component where D(k ,o j )  is 
less than errlim. With the new bounds chosen the process is repeated until the separation 
between the bounds is less than a preset limit. As long as the root is within the initial 
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region, the method will find it without moving away from the root which could happen 
with a Newton's method. We also do not need to know or estimate the gradient of this 
complicated function. 

The routine is initialized by finding the root for k = 0. D(0,w) becomes for the 
rmD1 scheme 

+ 2)z3 - 52 2 + 42 - 1 = 0. (A.28) 

Initial bounds are chosen in the complex w plane. As k is incremented, the bounds are 
centered around the root, w, + iwi, for the previous value of k with the assumption that a 
small change in k will only cause a small change in the root. 

The dispersion function can also be used in Eq. (3.30) to find the spectral density. 
The sum in the spectral density equation is 

Consider the sum over q fist. Let 

and b = wAt127r. So we have 

(A.29) 

(A.30) 

(A.31) 

For those cases where 6 > 2, we shall assume convergence when q reaches f (1 + 5 / 6 ) .  
Notice the exponential drops off very rapidly for larger q given the stipulation on the 
magnitude of a. When 6 < 2, we use Parsevitl's theorem to rewrite Eq. (A.31) obtaining 
another rapidly converging series. The theorem states 

q=-w m=--03 

where F(k) is the Fourier transform of f(x). Our sum becomes 

(A.32) 
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For this case convergence is assumed after m = f(l + m/7r). In either case we need to 
sum five or fewer terms. 

To find the remainder for the whole sum, we first estimate the sum over q as 

03 03 

e*[-a(b- q)2] < exp[-a(b - q)'] dq + 1 
q=-03 J -03 

(A.34) 

The sum is again calculated by adding the terms along the square -I 5 p 5 I ,  s = I OT - I ,  
and -I 5 s 5 I ,p  = I OT - I before checking the remainder. The remainder is estimated 

with the sum 

where only terms outside the square with sides of length 1 are included in the sum. As 
before k 5 n / A x ;  therefore, we have neglected k in kp allowing us to work only with 
kgp = 27rp/A. If we use the Cauchy 
and converting to polar coordinates, 

integral test, we find, after simplifying the integrand 

(A.36) 

The results from these sums are used to find the spectral densities shown in chapter 3. 
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