Microstructure and leaching characteristics of a technetium containing metal waste form.

PDF Version Also Available for Download.

Description

Argonne National Laboratory is developing an electrometallurgical treatment for spent fuel from the experimental breeder reactor II. A product of this treatment process is a metal waste form that incorporates the stainless steel cladding hulls, zirconium from the fuel and the fission products that are noble to the process, i.e., Tc, Ru, Pd, Rh, Ag. The nominal composition of this waste form is stainless steel/15 wt% zirconium 1-4 wt% noble metal fission products. The behavior of technetium is of particular importance from a disposal point of view for this waste form due to its long half life, 2. 14E5 years, ... continued below

Physical Description

11 p.

Creation Information

Johnson, S. G. December 16, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Argonne National Laboratory is developing an electrometallurgical treatment for spent fuel from the experimental breeder reactor II. A product of this treatment process is a metal waste form that incorporates the stainless steel cladding hulls, zirconium from the fuel and the fission products that are noble to the process, i.e., Tc, Ru, Pd, Rh, Ag. The nominal composition of this waste form is stainless steel/15 wt% zirconium 1-4 wt% noble metal fission products. The behavior of technetium is of particular importance from a disposal point of view for this waste form due to its long half life, 2. 14E5 years, and its mobility in groundwater. To address these concerns a limited number of spiked metal waste forms were produced containing Tc. These surrogate waste forms were then studied using scanning electron microscopy and selected leaching tests.

Physical Description

11 p.

Notes

INIS; OSTI as DE00010861

Medium: P; Size: 11 pages

Source

  • Materials Research Society 1998 Fall Meeting, Boston, MA (US), 11/30/1998--12/04/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/NT/CP-96709
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 10861
  • Archival Resource Key: ark:/67531/metadc623185

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 16, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 6, 2017, 7:42 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Johnson, S. G. Microstructure and leaching characteristics of a technetium containing metal waste form., article, December 16, 1998; Illinois. (digital.library.unt.edu/ark:/67531/metadc623185/: accessed September 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.