Development of High Erosivity Well Scale Cleaning Tools

PDF Version Also Available for Download.

Description

Build up of scale deposits on the walls of geothermal wells can occur rapidly due to the high dissolved solids content of geothermal fluids. Scale formation is a significant problem for both the well and for surface heat transfer equipment. Geothermal brines contain a wide variety if dissolved salts including carbonates, silicates, sulfates, and metal sulfides. One technology recently proposed for scale removal is the use of an ultrasonic device. In the present effort we apply cavitation in a more direct manner by the use of acoustically enhanced cavitating water jets which can be made to be much more efficient ... continued below

Physical Description

36 p.

Creation Information

Kalumuck, K. M.; Chahine, G. L.; Frederick, G. S. & Aley, P. D. July 1, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 14 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Build up of scale deposits on the walls of geothermal wells can occur rapidly due to the high dissolved solids content of geothermal fluids. Scale formation is a significant problem for both the well and for surface heat transfer equipment. Geothermal brines contain a wide variety if dissolved salts including carbonates, silicates, sulfates, and metal sulfides. One technology recently proposed for scale removal is the use of an ultrasonic device. In the present effort we apply cavitation in a more direct manner by the use of acoustically enhanced cavitating water jets which can be made to be much more efficient and aggressive than ultrasonic devices. Cavitating and self-resonating jet technologies have been proven to enhance the erosive power of liquid jets in a number of cutting, cleaning, and drilling applications. In this study we investigated two related technologies - one that employs cavitation and one that breaks the jet up into a series of slugs that produce water hammer type pressures upon impact. These technologies enable operation in both submerged and nonsubmerged conditions.

Physical Description

36 p.

Notes

OSTI as DE00013837

Medium: P; Size: 36 pages

Source

  • Other Information: PBD: 1 Jul 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ID/13684
  • Grant Number: FG07-98ID13684
  • DOI: 10.2172/13837 | External Link
  • Office of Scientific & Technical Information Report Number: 13837
  • Archival Resource Key: ark:/67531/metadc623181

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 1, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 12, 2017, 2:10 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 14

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kalumuck, K. M.; Chahine, G. L.; Frederick, G. S. & Aley, P. D. Development of High Erosivity Well Scale Cleaning Tools, report, July 1, 1999; United States. (digital.library.unt.edu/ark:/67531/metadc623181/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.