Microdefects in nitrogen doped FZ silicon revealed by Li+ drifting

PDF Version Also Available for Download.

Description

ULSI technology requires ultra-thin device oxides with excellent breakdown integrity. Recent studies have unveiled degraded dielectric breakdown voltage (DBV) performance of the ultra-thin oxides. These findings suggest that one source for poor oxide integrity is the incorporation of native defects from the Si substrate during oxide growth. Primary defect candidates are D defects which exist mostly in the central region of floating zone (FZ) grown Si crystals. Nitrogen (N) doping eliminates D defects, as detected by conventional means, and improves oxide integrity. Results are presented indicating the prevalence of microdefects in the central region of p-type nitrogen doped FZ Si ... continued below

Physical Description

5 p.

Creation Information

Knowlton, W.B.; Walton, J.T. & Lee, J.S. July 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

ULSI technology requires ultra-thin device oxides with excellent breakdown integrity. Recent studies have unveiled degraded dielectric breakdown voltage (DBV) performance of the ultra-thin oxides. These findings suggest that one source for poor oxide integrity is the incorporation of native defects from the Si substrate during oxide growth. Primary defect candidates are D defects which exist mostly in the central region of floating zone (FZ) grown Si crystals. Nitrogen (N) doping eliminates D defects, as detected by conventional means, and improves oxide integrity. Results are presented indicating the prevalence of microdefects in the central region of p-type nitrogen doped FZ Si using the method of Li ion (Li{sup +}) drifting in an electric field. A model has been developed based on Li interactions in Si which describes the Li{sup +} precipitation mechanism. The mechanism establishes that vacancies are the most likely Li{sup +} precipitation sites. The results are discussed in relation to breakdown mode patterns of polished FZ Si wafers after gate oxide tests.

Physical Description

5 p.

Notes

OSTI as DE96002559

Source

  • 18. international conference on defects in semiconductors, Sendai (Japan), 23-28 Jul 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96002559
  • Report No.: LBL--37561
  • Report No.: CONF-9507172--3
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 135145
  • Archival Resource Key: ark:/67531/metadc623100

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 5, 2016, 12:28 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Knowlton, W.B.; Walton, J.T. & Lee, J.S. Microdefects in nitrogen doped FZ silicon revealed by Li+ drifting, article, July 1, 1995; California. (digital.library.unt.edu/ark:/67531/metadc623100/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.