Magnetic spiral structures in La/Fe multilayers

W. Lohstroh1, M. Munzenberg1, W. Felsch1, H. Fritzsc\textthinspace h2, and G.P. Felcher3

1Physikalisches Institut Universit\textthinspace at Gottingen, Bunsenstr. 9, 37073 Gottingen, Germany
2Hahn-Meitner-Institut Berlin, Glienicker Str. 100, 14109 Berlin, Germany
3Argonne National Laboratory, Argonne, Illinois 60439

Submitted to Physica B
September 1998

This work was supported by the U.S. Department of Energy, BES-Material Sciences, under Contract No. W-31-109-ENG-38.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Magnetic spiral structures in La/Fe multilayers

W. Lohstroh¹, M. Münzenberg¹, W. Felsch¹, H. Fritzschê², H. Maletta², and G.P. Felcher³

¹ Physikalisches Institut, Universität Göttingen, Bunsenstr. 9, 37073 Göttingen, Germany
² Hahn-Meitner-Institut Berlin, Glienicker Str. 100, 14109 Berlin, Germany
³ Argonne National Laboratory, Argonne, IL 60439, USA

Abstract

The magnetic properties of La/Fe multilayers were tested by magneto-optical Kerr effect and polarized neutron reflectometry. The experiments indicated that above a layer thickness \(t_{La} = 25 \text{Å} \) the magnetic state of the virgin sample is represented by a spiral-like arrangement of magnetizations of subsequent Fe layers, whereas each Fe layer itself is ferromagnetic. Polarized neutron reflectometry shows that the helix has predominantly one chirality over the entire surface area of several cm². The magnetic spiral structure is imprinted during the growth process by rotating the sample in a small residual magnetic field. External magnetic field of 90 Oe are sufficient to erase the magnetic structure irreversibly.

Corresponding author:

W. Lohstroh
L. Physikalisches Institut, Universität Göttingen
Bunsenstr. 9
37073 Göttingen, Germany
Phone: +49-551-397605
Fax: +49-551-394493
e-mail: wlohstr@gwdg.de
Many recent studies have been dealing with magnetic structures arising in artificial multilayers. We have started investigating multilayers combining Fe and La which at the beginning seemed to exhibit special magnetic properties. Remarkably, it turned out that by controlling growth we are able to tailor the magnetic structure of the succeeding Fe layers on a mesoscopic length scale.

The samples were prepared by ion-beam sputtering with argon in an UHV chamber (base pressure $< 5 \cdot 10^{-5}$) at room temperature and have a nominal composition of [La$_{t_{La}}$/Fe$_{t_{Fe}}$]xN ($t_{La} = 26-35\AA$, $t_{Fe} = 20-35\AA$). Si (100) wafers covered with a 40\AA Cr buffer served as substrates and a 100\AA Pd cap layer prevents oxidation. During the preparation the samples were turned to provide a homogeneous layer thickness of several cm2 which was needed for neutron reflection experiments. The structure of the samples was characterized by x-ray reflectometry [1]. Both sublayers were found to be crystalline and textured in the growth direction: Fe with bcc (111) and La in hcp (100) and fcc (111). The interface roughness was limited to one atomic plane.

The magnetic properties of the multilayers were investigated by magneto-optical Kerr effect (MOKE) in the longitudinal configuration using a modulated polarized laser beam ($\lambda = 6328\AA$). The magnetic response depend strongly on the Fe-layer thickness. Up to 30\AA Fe the saturation field and the coercive field are small ($H_s < 100$ Oe, $H_c < 10$ Oe) whereas beyond this thickness a jump-like increase to $H_s = 500$ Oe and $H_c = 30$ Oe occurs (see Fig. 1). However, for all samples in the virgin state no net magnetization is observed. Indeed, the magnetic structure of the samples is complex as shown by neutron reflectometry in the virgin state as taken at the Hahn-Meitner-Institut Berlin and Argonne Laboratory [2]. Fig. 2 displays the polarized neutron spectrum of [La 32\AA/Fe 30\AA]x32 prior to a first magnetization. Beside the main peak (labeled with I_n) due to the chemical periodicity, magnetic
satellites \((0^m_m, 1^m_m, \ell^m_m)\) occur in the small-angle spectrum. In the kinematical theory their positions are given by

\[
q = 2\pi \left[\left(\frac{n}{d} \right) \pm \left(\frac{1}{\Lambda} \right) \right]
\]

where \(n\) refers to the order of the structural peak from the chemical periodicity at which the satellites occur, \(d\) and \(\Lambda\) are the chemical and magnetic periodicity, respectively. In this sample the magnetic moments of succeeding Fe layers are arranged in a spiral like structure with \(\Lambda = 3.3\) bilayers whereas the Fe sublayers themselves are ferromagnetic. The periodicities observed in other samples with different La layer thickness were found to lie between 3 and 8.6 bilayers. Neutron polarization was used to better characterize the magnetic state of the sample. The polarization axis of the neutrons was chosen perpendicular to the layer plane, that means the scattering vector \(q\) the propagation vector \(\Lambda\) of the spiral are collinear. The direction of \(\Lambda\) indicates the chirality of the helix, for a left-handed screw \(\Lambda\) points out of the plane whereas for a right-handed screw it is directed in the opposite direction. In this geometry all magnetic scattering causes the neutrons to flip their spin, and for the intensities \(I_\Gamma\) and \(I_\ell\) of the satellites right and left from the main peak the following selection rule is valid [3]:

\[
I_\Gamma = 1 \pm (Pq)(q\Lambda)
\]

Applied to the actual geometry in the experiment and supposed a positive polarization \((P = +1)\), left handed spirals give only rise for the \(\Gamma\) satellites whereas for right handed screws solely the \(\ell\) satellites appear. The opposite is true if the neutron spin points in the other direction \((P = -1)\). From neutron reflectometry it turns out that in the La / Fe multilayer only a single chirality is observed over the entire surface area. In naturally occurring magnetic spiral structures (for instance in several magnetic rare earths) the domains of
opposite chirality are almost equally populated, and all efforts to change their balance has
come to nought [4]. For La/Fe multilayers the helix and its single chirality are created by
the method of preparation. During growth the substrate is turned in a small residual field (3 Oe) due to the ion guns. Subsequent experiments [2] showed that the spiral pitch and its
turn chirality are determined by the velocity and the sense of the rotation. As a further test
of this mechanism a sample with similar bilayer thickness [La 32Å/Fe 30Å] was grown in
the following way: at the beginning of Fe layer deposition the substrate was rotated by ex-
actly 180°. Indeed, neutron reflectometry confirmed the antiparallel configuration of mag-
etization vectors of subsequent Fe layers. The magnetic structures (the spiral as well as
the antiparallel arrangement) were irreversibly destroyed in an external field of ~90 Oe.

The above experiments prove that we are able to create artificial magnetic structures in
La/Fe multilayers. As shown in Fig 1 for small layer thickness, Fe exhibits very soft mag-
netic properties in combination with La. Obviously during preparation the small field of 3
Oe is sufficient to orient the magnetization of the growing layer, but it is weak enough to
not disturb the layers already built. By this mechanism arbitrary magnetic structures may be
created on a mesoscopic length scale. The imprinted structures seem to stable in time.
Among the possible applications we envision a new neutron polarizer based on the strict
selection rules valid for the scattering on magnetic spiral structures with single chirality.

Acknowledgments

Work in Göttingen was supported by the Deutsche Forschungsgemeinschaft within SFB
345. Work at Argonne was supported by US department of energy, Basic Energy Science.
Material Science contract #W-31-109-ENG-38. The experiments at Hahn- Meitner Institut
were supported by the European Commission through the PECO 93 Action (contract ERB CIPD CT 940088).
References

Figures

Fig. 1: Saturation field H_S and coercive field H_c of the samples [La 32Å/Fe t_{Fe}Å] measured by MOKE. At the Fe thickness $t_{Fe} = 28$Å the saturation field and the coercive field exhibit a jump like increase. The straight lines are guides to the eye only.

Fig. 2: Polarized neutron reflectivity of [La 32Å/Fe 30Å]x32. The solid and open symbols show the R^- and R^+ reflectivity, respectively. The magnetic satellites Γ_m occur solely in the R^+ intensity whereas the Γ_m satellites show up only for the neutron beam polarized in the opposite direction. As discussed in the text this indicates that the magnetic structure of the entire sample is a magnetic spiral with right handed chirality.
[La 32Å/ Fe \(t_{Fe} \) Å]

- **Hs [Oe]**
 - 600
 - 500
 - 400
 - 300
 - 200
 - 100
 - 0

- **Hc [Oe]**
 - 30
 - 20
 - 10
 - 0

- **\(t_{Fe} \) [Å]**
 - 0
 - 20
 - 25
 - 30
 - 35
 - 40