The effects of structural setting on the azimuthal velocities of blast induced ground motion in perlite

PDF Version Also Available for Download.

Description

A series of small scale explosive tests were performed during the spring of 1994 at a perlite mine located near Socorro, NM. The tests were designed to investigate the azimuthal or directional relationship between small scale geologic structures such as joints and the propagation of explosively induced ground motion. Three shots were initiated within a single borehole located at ground zero (gz) at depths varying from the deepest at 83 m (272 ft) to the shallowest at 10 m (32 ft). The intermediate shot was initiated at a depth of 63 m (208 ft). An array of three component velocity ... continued below

Physical Description

222 p.

Creation Information

Beattie, S.G. February 1, 1995.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Author

  • Beattie, S.G. New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

A series of small scale explosive tests were performed during the spring of 1994 at a perlite mine located near Socorro, NM. The tests were designed to investigate the azimuthal or directional relationship between small scale geologic structures such as joints and the propagation of explosively induced ground motion. Three shots were initiated within a single borehole located at ground zero (gz) at depths varying from the deepest at 83 m (272 ft) to the shallowest at 10 m (32 ft). The intermediate shot was initiated at a depth of 63 m (208 ft). An array of three component velocity and acceleration transducers were placed in two concentric rings entirely surrounding the single shot hole at 150 and 300 azimuths as measured from ground zero. Data from the transducers was then used to determine the average propagation velocity of the blast vibration through the rock mass at the various azimuths. The rock mass was mapped to determine the prominent joint orientations (strike and dip) and the average propagation velocities were correlated with this geologic information. The data from these experiments shows that there is a correlation between the orientation of prominent joints and the average velocity of ground motion. It is theorized that this relationship is due to the relative path the ground wave follows when encountering a joint or structure within the rock mass. The more prominent structures allow the wave to follow along their strike thereby forming a sort of channel or path of least resistance and in turn increasing the propagation velocity. Secondary joints or structures may act in concert with more prominent features to form a network of channels along which the wave moves more freely than it may travel against the structure. The amplitudes of the ground motion was also shown to vary azimuthally with the direction of the most prominent structures.

Physical Description

222 p.

Notes

OSTI as DE95017361

Source

  • Other Information: DN: Thesis submitted to New Mexico Institute of Mining and Technology, Socorro, New Mexico.; TH: Thesis (M.S.)

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Other: DE95017361
  • Report No.: LA-SUB--95-101
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 106445
  • Archival Resource Key: ark:/67531/metadc622987

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • February 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • July 28, 2016, 7:32 p.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 6

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Beattie, S.G. The effects of structural setting on the azimuthal velocities of blast induced ground motion in perlite, thesis or dissertation, February 1, 1995; New Mexico. (digital.library.unt.edu/ark:/67531/metadc622987/: accessed December 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.