Fabrication and characterization of oxide fibrous monoliths produced by coextrusion.

PDF Version Also Available for Download.

Description

Unidirectional fibrous monoliths (FMs) based on dense, strong ZrSiO{sub 4} cells that were surrounded by a porous, weaker ZrSiO{sub 4} cell-boundary phase were fabricated. A duplex filament was coextruded, sectioned, bundled, and the resulting bundle was extruded to form a new filament. This filament was cut and packed into plate and bar dies to produce FM test specimens. Four-point flexural tests were conducted on the cell material, cell-boundary material, and FMs. After testing, fracture surfaces and cross sections were examined by scanning electron microscopy. The FMs exhibited graceful failure in flexural testing, and the fracture surfaces exhibited clear evidence of ... continued below

Physical Description

11 p.

Creation Information

Polzin, B. J. May 19, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Unidirectional fibrous monoliths (FMs) based on dense, strong ZrSiO{sub 4} cells that were surrounded by a porous, weaker ZrSiO{sub 4} cell-boundary phase were fabricated. A duplex filament was coextruded, sectioned, bundled, and the resulting bundle was extruded to form a new filament. This filament was cut and packed into plate and bar dies to produce FM test specimens. Four-point flexural tests were conducted on the cell material, cell-boundary material, and FMs. After testing, fracture surfaces and cross sections were examined by scanning electron microscopy. The FMs exhibited graceful failure in flexural testing, and the fracture surfaces exhibited clear evidence of crack deflection and delamination.

Physical Description

11 p.

Notes

OSTI as DE00011176

Medium: P; Size: 11 pages

Source

  • American Ceramic Society 101st Annual Meeting, Indianapolis, IN (US), 04/25/1999--04/28/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ET/CP-97898
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 11176
  • Archival Resource Key: ark:/67531/metadc622981

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 19, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 6, 2017, 7:30 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Polzin, B. J. Fabrication and characterization of oxide fibrous monoliths produced by coextrusion., article, May 19, 1999; Illinois. (digital.library.unt.edu/ark:/67531/metadc622981/: accessed November 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.