Progress in Fast Ignitor Research with the Nova Petawatt Laser Facility


This paper was prepared for submittal to the
17th International Atomic Energy Agency Fusion Energy Conference
Yokohama, Japan
October 19-24, 1998

November 10, 1998

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.
DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.
PROGRESS IN FAST IGNITOR RESEARCH WITH THE NOVA PETAWATT LASER FACILITY


Lawrence Livermore National Laboratory, P.O. Box 808, L-473 Livermore CA 94550 USA

ABSTRACT

The physics of fast ignition is being studied using a petawatt laser facility at the Lawrence Livermore National Laboratory. Performance of the PW laser with deformable mirror wavefront control giving intensities up to $3 \times 10^{21} \text{Wcm}^{-2}$ is described. Measurements of the efficiency of conversion of laser energy to relativistic electrons and of their energy spectrum and angular distribution including an observed narrow beam angle of $\pm 15^\circ$, are reported. Heating by the electrons to near 1keV in solid density CD$_2$ is inferred from the thermo-nuclear neutron yield. Estimates suggest an optimized gain of 300x if the National Ignition Facility were to be adapted for fast ignition.

1. INTRODUCTION

The concept of the Fast Ignition (FI) [1] is of importance in inertial fusion energy (IFE) research because it offers the possibility of significantly higher gain than can be obtained in indirectly driven [2] or directly driven [3] inertially confined fusion (ICF). Higher gain would allow power generation with lower driver efficiency and FI is therefore attractive for laser driven IFE. Figure [1] illustrates this by showing the calculated gain for ICF targets of a size appropriate to the 1.8 MJ National Ignition Facility (NIF) which will start operation in the USA in 2002. The NIF target designs for indirect drive have been developed over decades of research and there is a sound basis for the predicted gain factor of 12 to 20. The research base for direct drive with predicted gains at NIF scale of 20 to 70 is less mature, but is nevertheless substantial. The potential for gain of about 300 indicated for FI at NIF scale is based on newer physics of the interaction of intense laser radiation with plasma in the relativistic regime and its practical feasibility remains to be proven.

The essential idea of fast ignition is to pre-compress the fusion fuel by conventional laser driven methods, then to ignite the fuel with a separate short duration high intensity laser pulse. A pre-cursor hole boring pulse creates a channel in the plasma atmosphere enabling the ignitor pulse to penetrate close to the dense fuel. Absorption of the ignitor pulse at the critical density interface generates a beam of relativistic electrons which transport energy to the dense fuel and heat the ignition spark. It must reach a temperature $kT>10$ keV over a density radius product $\rho r>0.5 \text{gcm}^{-2}$[4]. The mean energy of the electrons must be such that their energy is deposited

* Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. W 7405 ENG 48.
** Visiting from Department of Electrical Engineering, University of Alberta, Edmonton, Alberta, T6G 2G7, Canada
*** Visiting from the Joining & Welding Research Institute, Osaka University, Ibaraki, Osaka 567, Japan
within the spark and about 1MeV is therefore required. This paper discusses experimental work aimed at testing ideas relevant to FI using a laser beam line of up to 1 petawatt (PW) power at the Nova facility [5].

![Diagram of gain curves for laser driven ICF targets](image)

**FIG. 1.** Calculated gain curves for laser driven ICF targets. Fast ignition plots are labeled with density, ignition spark drive energy and focal spot $1/k$ which are discussed in section 10

2. THE PETAWATT LASER

Powerful short pulse lasers have become available through chirped pulse amplification (CPA) in high energy neodymium glass lasers and one beam line of the 10 beam Nova laser using disc amplifiers of up to 31.5 cm diameter, has been adapted with CPA to generate 0.8 kilojoule stretched pulses. Petawatt power is obtained when the stretched pulse is re-compressed via a pair of 1 meter diameter reflection gratings to a minimum duration of less than 500 ps [5].

The focal spot determines the intensity and a diffraction limited Airy pattern would ideally be produced. In practice, the wave front quality is typically many times diffraction limited due both to passive optical imperfections and to thermal effects from heating of the laser glass by the flashlamps. The PW laser beam line at Nova has a recovery time of more than 10 hours to fully dissipate the heating from a single firing. The introduction of a computer controlled deformable mirror (DM) has significantly improved the wavefront. The surface figure of the DM is adjusted by an array of 37 piezo-electric actuators. The required correction is computed from a ccd image of 37 focal spots produced by a matching array of micro-lenses in a Hartmann sensor. The sensor is first fed with a reference plane wave and then at 10 Hz, with pulses from the Nova beamline (operating without firing of the main amplifiers). The wave front is corrected in real time for errors having spatial frequencies up to a limit determined by the finite number of piezo-electric actuators. After a full power firing using the DM system, the difference between the wavefront quality registered by the Hartmann sensor and the plane reference wave is used to compute the uncorrected prompt optical distortion due to the firing of the flashlamps. A pre-correction for the prompt distortion is then also introduced on the DM. The net effect of use of the DM is illustrated in figure 2. The laser focal spot is recorded by an equivalent plane monitor equipped with a 16 bit ccd camera. A typical image without the DM after a 7 hour cooling delay, shows significant thermal distortions. The much improved focal spot shown with use of the DM is reproducible for firing intervals as short as 1 1/2 hours. Analysis of the ccd images allows
determination of the spectrum of intensity. Typically, peak intensities reach values up to $3 \times 10^{20}$ W cm$^{-2}$ when the laser is operated at a power of 1 PW and 20% of the energy is delivered above $10^{20}$ W cm$^{-2}$. The fraction of the power contained up to the first minimum around the central focal spot is 30%. The Strehl ratio is 5% and the fwhm of the central focal spot is 2.5 times the diffraction limit.

Laser energy incident on the target prior to the arrival of the short-pulse is important in experiments. This energy arises from amplified spontaneous emission (ASE) and from small fractional leakage of the short-pulse through Pockels cell gates in the pulse generator system. ASE begins approximately 4 ns prior to the short pulse at a roughly constant intensity and its energy is typically $3 \times 10^4$ of the main pulse energy. A leakage pulse arrives 2 ns before the main pulse and its minimized energy is $10^4$ of the main pulse. The ASE and leakage pre-pulse create a plasma from solid targets prior to the arrival of the main pulse and interaction of the main pulse with this plasma particularly by relativistic self focusing, is important in the conversion of laser energy to electron energy. Short-pulse optical interferometry has been used to measure the density structure of the pre-pulse induced plasma and these results have been compared with numerical simulations in 2 dimensional cylindrical symmetry using the hydrodynamic code Lasnex [6]. Good consistency of measured and computed results has allowed more routine determination of variations in the structure of the performed plasma from Lasnex modeling in conjunction with monitoring the ASE and prepulse levels on each shot.

![Image of equivalent plane focal spot images and horizontal lineouts with and without the DM. The fwhm of the focal spot with the deformable mirror is 8 μm.](image)

Experiments with the PW laser are conducted in a vacuum chamber in which an f/3 parabolic mirror is used to focus the 55 cm diameter main beam. For pulses down 5 ps duration the parabola is protected with a fused silica debris shield. For shorter pulses down to 0.5 ps the
focused beam is reflected at normal incidence and 3 cm diameter by a dielectric mirror operating as a plasma mirror and no debris shield is used.

3. CONVERSION EFFICIENCY AND ENERGY SPECTRUM OF THE ELECTRONS

Conversion of up to 30% of the incident laser energy into electrons of mean energy exceeding 600 keV has been inferred from measurements the Kα fluorescence of a buried layer of Mo in Cu targets [7]. These measurements made at peak focused intensity of 2x10^19 Wcm^-2 in 0.5 ps pulses were obtained with 15 J laser pulses using a smaller scale prototype of the PW beam. The good efficiency and suitable mean energy of the electrons for application to fast ignition provide a basis for more detailed studies of the electron source.

The full scale PW system operating in both 0.5 ps and 5 ps pulses has been used to study the electron energy spectrum at peak intensities of 3x10^20 and 3x10^19 Wcm^-2 respectively. A magnetic electron spectrometer [8] was used to measure the energy spectra of the electrons. The targets in these experiments were also used to produce high energy x-rays by bremsstrahlung and were typically 0.5 mm thick Au. Electrons emitted from the rear of these targets have therefore lost energy by both collisions and due to the electrostatic potential in the target. In spite of these losses, the recorded electron spectra have energies up to 100 MeV as shown in figure 3. The quasi-exponential slope of the electron energy spectrum can be used to estimate an equivalent temperature for the electron source and measurements in the region of above 10 MeV show apparent temperatures for both the 0.5 ps and 5 ps data of the order of 5 to 10 MeV. It is clear from these data that the tail has a higher temperature than would be inferred by assuming the temperature to be close to the ponderomotive potential at the vacuum intensity. Such an estimate gives 1 MeV and 3 MeV respectively for the long and short pulse data. The spectra were recorded at 30° from the laser direction and also at 95° for targets at normal incidence. It is evident from figure 3 that in the region around 10 MeV the electron flux is significantly larger in the forward direction. Interesting also is the observation of positrons produced by pair production in the Au target.

![Energy Spectrum](image)

**FIG. 3.** Electron energy spectrum for a 280J, 0.5 ps pulse normally incident on a 0.5 mm Au target.
5. ANGULAR DISTRIBUTION OF X-RAY EMISSION

X-ray bremsstrahlung from relativistic electrons has cone angle of $1/\gamma$ where $\gamma$ is the relativistic factor. Consequently, measurements of the angular distribution of the x-ray emission at photon energies in the MeV region are almost equivalent to direct measurement of the angular distribution of the electron flux in the target. Silicon pin diode detectors in 2.5 cm thick lead housings were used to record the hard x-rays of energies greater than 1 MeV. An array of typically 10 of these detectors showed forward peaking of the x-ray emission, but also showed very large random fluctuations in the pattern of emission. A more extensive array of 97 thermoluminescent (TLD) detectors was therefore, put in place to measure the distribution more accurately. Their filtering was such that they responded to photon energies greater than 300 keV with a rather flat spectral response per rad of incident radiation. The array covered a $\pm 45^\circ$ cone of angles around the laser direction and was used to produce the map of x-ray emission shown in figure 4. The striking feature of these data is the broad angular range and multiple off-axis peaks. Comparison of nominally identical shots shows that the pattern of these peaks changes randomly from shot to shot.

![Diagram](image)

**FIG. 4.** Right: the angular pattern of x-ray emission recorded with a TLD array. Each segment represents one TLD. Left - Nuclear activation from 1 mm thick Au targets backed with 2 mm Ni and 1 mm Au, the latter subdivided into 1 mm cylinders to map the angular pattern of activation over a range of $\pm 45^\circ$.

6. NUCLEAR ACTIVATION

High energy x-ray photons interacting with high $z$ target materials induce photo-neutron emission and nuclear activation through nuclear giant resonance ($\gamma,xn$) processes. The resonances are relatively narrow and peak at energies which increase systematically with the number of ejected neutrons $x$. For example $x=1$ in Au peaks at about 15 MeV while the $x=7$ process peaks at about 70 MeV. The product nuclei are typically in excited states and decay by $\gamma$ emission. Where the half lives of the products are suitable for analysis by $\gamma$ counting techniques the yields can be measured accurately. Au has been found to be an excellent element in this respect and in our measurements the yields for $x=1,3,4,5,6$ and 7 have been recorded. From the yields and known cross sections of these processes the absolute spectral intensity in the 15 to 70 MeV spectral region covered by the peaks of these cross sections has been deduced.
Another useful feature of the nuclear activation is that it enables a determination of the angular distribution of the x-rays at high photon energy. Figure [4] illustrates results obtained from x = 1 nuclear activation of an Au disc (which is composed of multiple smaller disks) behind the target. The pattern shows a typically broad off-axis peak and there is evidence in figure [4] of splitting of the peak. The direction of the peak is random. The TLD recorded patterns of 1 MeV photons and the 15 MeV activation patterns have been seen to be uncorrelated. The stochastic behavior, wide beam angle and random off-axis peaks observed for normal incidence 0.5 ps irradiation of Au targets are unfavorable for applications and the reasons for this behavior and possibilities for modifying it are therefore important.

7. RELATIVISTIC CHANNELING

Evidence of relativistic channel formation is shown in figure 6. The laser was focused at variable distances in front of and behind the surface of a planar Au target at normal incidence and 550 J in 0.5 ps. The irradiated area on the target if the propagation of the laser were unaffected by the performed plasma, is shown by the superimposed circles. For focusing 300 μm in front of the target the x-ray pinhole camera images of the front surface of the target filtered to record x-rays of about 5 keV energy, shows an emission zone which is approximately 20 μm in diameter and much smaller than the nominal 100 micron diameter irradiated area. The image has structure suggesting one strong filament and 2 subsidiary filaments. Displacement of the target to the plane of best focus shows an essentially invariant x-ray image. By contrast when laser was focused 200 μm behind the surface, the x-ray image was diffuse and of weak intensity extending over a large area more than 300 μm in diameter. It has one 10 μm diameter bright spot attributable to a small fraction of the beam undergoing relativistic self focusing. The yield of photo-neutrons was essentially constant at 2 to 3 x10⁸ for focusing in front of the target while focusing behind the target surface gave a drop in yield to 10⁷. These data imply a constant high intensity of interaction, associated with relativistic channeling for focusing in front of the surface.

FIG. 5. X-ray pinhole camera images. The location of the target surface relative to the focal plane is indicated in the sketch.
8. MECHANISMS INFLUENCING THE ELECTRON SOURCE

Possible causes for the stochastic behavior and wide beam divergence include a hosing instability of the relativistic filament at near critical density, which has been seen in particle in cell (PIC) modeling [9] or Weibel instability breaking up the relativistic electron current into multiple off axis filaments which has also been seen in PIC modeling [10]. Refraction of the filament in the structure of preformed plasma may also contribute. The hot tail in the energy spectrum of the electrons is attributable with some confidence to acceleration processes at sub-critical density which have recently been noted in PIC modeling to give apparent temperatures of more than 3 times the ponderomotive potential. [11]

9. ELECTRON EMISSION FOR P POLARIZED OBLIQUE INCIDENCE

In very recent experiments the angular distribution of electron emission has been measured for P polarized 45 degree incidence on CH polymer targets typically 100 μm thick using 5 ps laser pulses at energies up to 650 J. Here the absorption mechanism is different from the jxB process at normal incidence which creates two electron bursts per optical cycle. P polarized obliquely incident absorption is by the Brunel mechanism [12] in which electrons are driven perpendicular to the target surface from sub to super-critical density by the electric field of the laser. The absorption launches electrons into the target with the oscillation energy along the perpendicular to the target surface. The electrons were detected by a cone of radio-chromic film placed behind the target and centered on the laser axis. This film was in two layers, the first behind 7 μm of Al and the second layer behind an additional 200 μm of Ta. The first layer detected electrons with energies > 100 keV and the second > 500 keV. The image from the first layer showed the emission pattern in figure 6. An intense electron beam saturating the film is observed approximately normal to the target surface. Also of interest are weaker emission features, in particular, a line of emission (in a V shape on the unfolded cone of film) which corresponds to electrons accelerated in the plane of incidence over a ± 90° range of angles relative to the laser beam. The second layer shows only the beam directed along the normal to the target surface. A line out of the optical density of the film indicates that the angular range of the beam is only ± 15° at full width half maximum of the optical density (which is approximately proportional to intensity). There is also interesting fine structure within the beam with an angular range of just a few degrees. This narrow well directed beam is extremely promising and interesting for application to fast ignition.

![Radiochromic film images of the electron emission. Left- >100keV pattern over forward hemisphere (cone of film placed on a flat plane). Right- >500keV enlarged view of beamed emission](image-url)
Theoretical work \cite{13} has suggested that a beamed source of electrons in solid density material can be transported with magnetic collimation by its self-generated magnetic field. More recent calculations \cite{14} for intensity of $2 \times 10^{19} \text{Wcm}^{-2}$ in a 15 $\mu$m focal spot show collimated heat flow with temperature reaching 3 keV on axis and 1 keV out to a radius of 15 $\mu$m penetrating through 0.1 mm of solid CD$_2$. This kind of heat transport is highly desirable for fast ignition. Moreover, the electron jet previously described is suitable to initiate this behavior. Targets of solid CD$_2$ with a surface layer of CH were irradiated with 5 ps pulses to study thermonuclear fusion reactions in the heated CD$_2$ which generate neutrons from DD fusion with an energy of 2.45 MeV and an energy spread in keV of $82(kT/1 \text{keV})^{1/2}$. Such nearly mono-energetic thermal neutron emission is very different from the photo-neutron emission discussed earlier or neutron generation by accelerated deuterons striking static deuterons \cite{15}, both of which produce neutron energy spectra that are many MeV wide. Figure 7 shows a neutron spectrum recorded by a large aperture neutron scintillator array (Lansa) comprised of 196 photo-multiplier/scintillator detectors located 20 m from the target at an angle that is backward at 70° from the laser axis. The target had 10 $\mu$m CH over 100 $\mu$m CD$_2$ and was irradiated at 5 ps with 180 J. The striking feature of the spectrum is a narrow peak at 2.45 MeV which is well above the noise level and cannot be attributed to statistical fluctuations. This peak implies emission of $6 \times 10^4$ thermonuclear neutrons and the yield (scaling as $T^5$) suggests heating to a temperature approaching 1 keV.

**FIG 7.** Lansa neutron energy spectrum showing a narrow peak of thermal DD fusion superimposed on a broad background

11. FAST IGNITION AT THE SCALE OF THE NIF

A general conclusion in considering fast ignition is that the critical difficulty is to create the ignition spark. The energy required in the electron beam reaching the spark has been determined from numerical simulations \cite{16} and can be written in the form $80(100/\rho)^{1/8}$ kJ. The same analysis shows that the required density radius product $\rho r$ is 0.5 g cm$^{-2}$. Reducing the density therefore increases both the spark radius and its inertial confinement time. Larger radius and longer pulse reduce the required intensity at the laser focal spot. An important constraint for fast ignition is that the electrons should have an energy deposition range equal to the spark $\rho r$. A
limit of about 1MeV is therefore imposed on the energy. The laser intensity \( I \) (wavelength)\(^2\) or \( I \lambda^2 \) is consequently limited to approximately \( 2.5 \times 10^{19} \text{Wcm}^{-2} \mu\text{m}^2 \).

At the scale of NIF the ignition requirements could be met with 10\% of the NIF beams (i.e.19) focused in a clustered array of 25 \( \mu \text{m} \) diameter spots at 20 ps pulse duration and 0.53 \( \mu \text{m} \) wavelength, delivering 200 kJ. It is assumed here that hole boring brings the ignitor beams to within about 100 \( \mu \text{m} \) of the dense core, that there is 30\% conversion to electrons and 66\% efficient magnetically collimated transport with two fold increase in electron beam diameter at the ignition spark. Compression of the fuel is assumed to be accomplished with 8\% hydrodynamic efficiency typical of direct drive and with a ratio \( \alpha \) of internal energy to the Fermi degenerate minimum of 2. If 1 MJ of laser energy is used to compress the fuel the mass is 4.1 mg with a diameter of 340 mm. The \( \eta \) is 3.4 gcm\(^{-2} \) and the burn efficiency given by \( \eta \alpha / (\eta \alpha + 7) \) is 0.33. The gain i.e. ratio of burn yield to laser energy, is therefore 330. It is necessary for obtaining high gain that the total laser drive be well above the ignition threshold and this sets a lower limit on the density as illustrated in figure 1. The upper density limit arises from \( I \lambda^2 \) in the focal spots which increases with density as indicated in figure 1. In this scenario there is a narrow operating window at about 200 g/cc. The higher gain obtained in fast ignition arises because we assume high compression efficiency \( \eta = 8\% \), a low adiabat ratio \( \alpha = 2 \) and a low density \( \rho = 200 \). where the energy used to compress the fuel dominates the total input energy and scales as \( \eta \alpha \rho^{2/3} \). Lower values of both \( \alpha \) and \( \rho \) relative to direct drive are the source of the 5 to 10 fold higher gain for FI shown in figure 1.

This simple model has many limitations. The requirement in fast ignition research is to substantiate that the postulated behaviors can be obtained. It is apparent that if they can be obtained then fast ignition has a unique capability for high gain of considerable potential importance for IFE.

References