Determination of Radium in Water

F. A. Hohorst
M. W. Huntley
S. D. Hartenstein
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Determination of Radium in Water

F. A. Hohorst
M. W. Huntley
S. D. Hartenstein
DETERMINATION OF RADION IN WATER

APPLICABILITY

These detailed work instructions (DWIs) are tailored for the analysis of radium-226 and radium-228 in drinking water supplies from ground water and surface water sources and composites derived from them. The instructions have been adapted from several sources, including a draft EPA method (Cf. References). One objective was to minimize the generation of mixed wastes.

Quantitative determinations of actinium-228 are made at 911 kEev. The minimum detection level (MDL) for the gamma spectrometric measurements at this energy vary with matrix, volume, geometry, detector, background, and counting statistics. The range of MDL’s for current detectors is 0.07 to 0.5 Bq/sample.

Quantitative determinations of radium-226 are made by counting the high energy alpha particles which radium-226 progeny emit using liquid scintillation counting (LSC). The minimum detectable activity (MDA) is 3.8 E-3 Bq/sample. The maximum concentration which may be counted on available instruments without dilution is about 2 E+5 Bq/sample.

Typically, this determination of radium in a 2 L sample has a yield of 80%. If radium-228 is determined using a 16 h count after 50 h grow-in, the typical MDL is 1 E-9 to 8 E-9 μCi/mL (1 to 8 pCi/L). If radium-226 is determined using a 2.5 h count after 150 h grow-in, the typical MDA is about 1 E-10 μCi/mL (0.1 pCi/L).

PRINCIPLE

Radium is a naturally occurring radioactive element whose radioisotopes ultimately decay to isotopes of lead and bismuth. Radium-226 first decays to radon-222 with a half life of 5.75 years. Radium-228 first decays to actinium-228 with a half life of 6.13 hours. The progeny of both radioisotopes undergo further decay emitting a variety of alpha, beta, and gamma radiation.
Barium-133 tracer is added and equilibrated with an aliquot of sample. Strontium carrier is then added and equilibrated. Strontium, barium, radium are precipitated as the sulfate. The precipitate is washed, metathesized to the carbonate, converted to the chloride, dissolved in dilute acid, and placed in a glass liquid scintillation counting (LSC) vial under a layer of immiscible LSC cocktail.

Radon, a noble gas formed by radioactive decay of radium, diffuses from the aqueous phase into the LSC cocktail for which it has a greater affinity than for water. After a 2 day growth period, the sample is gamma scanned to determine barium-133 and actinium-228. These data are used to calculate the chemical yield for radium and the concentration of radium-228, respectively.

The sample is then equilibrated for 2 additional days (or longer) and counted in a liquid scintillation counter using energy discrimination to measure alpha particles from radon progeny.

There are no known chemical interferences from species found in drinking water nor from the dilute concentration of acid which may be present in the standards. Calcium may cause problems at high concentrations because its sulfate is slightly soluble. Uranium is removed as the carbonate complex. Radium-224 ($t_{1/2} = 3.62$ d) is carried along with other radium isotopes if it is present; it diminishes as a result of decay when separated from its parent, thorium-228. Other radioactive elements may cause positive bias if present in significant quantities.

QUALITY ASSURANCE REQUIREMENTS

The electronic balances used in weighings must be serviced and calibrated once a year. Proof of service must be posted on the balance. Balances with internal calibration features may have their performance checked at the beginning of each use period.

Duplicate aliquots from at least one sample in the set are analyzed as described in this DWI if sufficient sample is available.

Quality assurance for chemical yield and 228Ra determinations (i.e., gamma counting) rely on counting room QA requirements reported in INEL-94/051. Gamma scanning of each sample for 228Ra detects unanticipated gamma emitting radionuclides which may interfere.

A minimum of one 226Ra bench standard (or control), prepared as described in RP-Std, must
be analyzed with each set of ten samples in the exact same manner that the samples were analyzed. A minimum of one blank must be analyzed with each set of ten samples in the exact same manner that the samples were analyzed. If more than ten samples are analyzed in a set, at least two 226Ra bench standards (or controls) and two blanks, prepared as described in the DWI, must be analyzed with each set.

The bench standards and controls verify the response of 226Ra and its progeny; they are acceptable if they agree with the known value within two standard deviations. Blanks verify the absence of interfering radioactivity in the equipment and reagents; they are acceptable if they contain no activity except background quantities of natural radioactivity.

Precision and bias of the method is affected by the background in the energy window used for analysis. A method is provided for selection of the analytical window which minimizes the contribution of background to the measurement.

The samples are counted for 226Ra on either a Beckman Liquid Scintillation System, Model 6500, or a Wallac Instruments, Model 1411 DSA. These instruments are checked to verify proper performance with a 3H source whenever samples are to be counted. Discriminator settings minimize crossover of alpha particles into beta particle accumulations and vice versa. Additional discriminator settings minimize carryover of low energy photons into the region where photons from 222Rn and its progeny are recorded.

Method Performance

This method has been developed and evaluated utilizing intra-laboratory radium-226 controls prepared by dilution of NIST SRM 4965. It has also been evaluated utilizing blind water samples containing radium-226 and radium-228 sent out by Environmental Protection Agency, National Exposure Research Laboratory, Characterization Research Division, Las Vegas, NV, as part of their Uranium-Radium in Water Performance Evaluation Study whose results are routinely published. Concurrent determination of radium-228 on EPA samples are presented. These data for two analysts are reported in Table 1 and in Table 2.

Based on barium-133 recoveries in these limited evaluations, yields have averaged 80%; the higher recovery in EPA samples is attributed to higher dissolved solids. Recoveries for laboratory blanks, trip blanks, and samples have been comparable to those obtained for controls. The precision of duplicate samples has been within 20%. Although the data in Tables 1 and 2 are suggestive, they are insufficient data to support definitive global statements regarding accuracy, precision, and bias of the method.
TABLE 1
Method Performance with Radium-226

<table>
<thead>
<tr>
<th>Sample Source</th>
<th>Analyst</th>
<th>n</th>
<th>Barium-133 Yield a (%)</th>
<th>Accuracy a,b (normalized)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIST</td>
<td>1</td>
<td>10</td>
<td>75.6 ± 6.2</td>
<td>0.940 ± 0.078</td>
</tr>
<tr>
<td>NIST</td>
<td>2</td>
<td>12</td>
<td>76.0 ± 13.6</td>
<td>0.976 ± 0.051</td>
</tr>
<tr>
<td>EPA</td>
<td>1</td>
<td>3</td>
<td>92.0 ± 2.8</td>
<td>0.958 ± 0.036</td>
</tr>
<tr>
<td>EPA</td>
<td>2</td>
<td>3</td>
<td>96.5 ± 5.4</td>
<td>0.882 ± 0.184</td>
</tr>
<tr>
<td>ALL</td>
<td></td>
<td>28</td>
<td>79.8 ± 12.3</td>
<td>0.951 ± 0.081</td>
</tr>
</tbody>
</table>

a Uncertainties are standard deviations, s.
b Data for each determination has been normalized via division by the accepted value for radium-226. Samples contained from 16 to 37 pCi.

TABLE 2
Method Performance with Radium-228

<table>
<thead>
<tr>
<th>Sample Source</th>
<th>Analyst</th>
<th>n</th>
<th>Barium-133 Yield a (%)</th>
<th>Accuracy a,b (normalized)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA</td>
<td>1</td>
<td>3</td>
<td>92.0 ± 2.8</td>
<td>0.963 ± 0.077</td>
</tr>
<tr>
<td>EPA</td>
<td>2</td>
<td>3</td>
<td>96.5 ± 5.4</td>
<td>0.920 ± 0.042</td>
</tr>
<tr>
<td>ALL</td>
<td></td>
<td>6</td>
<td>94.3 ± 4.6</td>
<td>0.942 ± 0.060</td>
</tr>
</tbody>
</table>

a Uncertainties are standard deviations, s.
b Data for each determination have been normalized via division by the accepted value for radium-228. Samples contained from 14 to 20 pCi.
SAFETY REQUIREMENTS

The analyst performing the procedure must be familiar with standard operating procedures and practices for the IRC and INEL-94/052 (formerly WIN-186) detailed working instructions regarding waste disposal and the handling of hazardous materials.

Eye protection meeting ANSI Standard Z87.1 for splash protection should be worn when handling more than 100 mL of carcinogens, corrosives, or oxidizers. Face shields and safety glasses must be worn when transferring solutions of 1) hazardous materials from or to containers 4-L or larger; 2) concentrated (>8M) acids or bases from or to containers 2.5-L or larger; 3) or solutions of > 1M sulfuric acid or >1% HF to containers 500-mL or larger.

Laboratory coats should be worn when handling corrosives, carcinogens, or oxidizers. Laboratory aprons must be worn when pouring concentrated acids from containers greater than 1-L.

Plastic or rubber gloves must be worn when handling organics, corrosives and oxidizers. Neoprene gloves must be used when pouring concentrated acids from bottles larger than 1-L or when handling HF.

If an exposure to a strong acid occurs, rinse the affected area with water for at least 15 minutes. Notify supervision and contact Medical for treatment. Other safety precautions for hazardous chemicals handled in this procedure are described in Detailed Working Instruction SC-F "Chemical Handling, Storage and Labeling". A summary of applicable precautions for this detailed working instruction is as follows:

Hydrochloric acid: Handle solutions more concentrated than 4M HCl in an exhaust hood or in a manner to avoid inhalation of HCl vapors. The odor of HCl provides adequate warning for a prompt voluntary withdrawal from excessive exposure. Contact with skin results in a burning sensation at the location of the contact.

Sodium carbonate: Solutions are slippery to the touch and may result in a burning sensation at the location of the contact. Addition of solutions more concentrated than 0.1M NaOH to acidic solutions should be done slowly to avoid rapid evolution of heat and carbon dioxide which may cause splattering of the solution.

Sulfuric acid: Handle solutions more concentrated than 1M H₂SO₄ in an exhaust hood
or in a manner to avoid inhalation of SO₃ vapors. Vapors from sulfuric acid generally appear as white aerosol clouds. Contact with the skin results in a burning sensation and a black/brown discoloration of the skin at the location of the contact. Sulfuric acid is hygroscopic and absorbs water quickly, so any drops of solution in the vicinity of work with sulfuric acid may be an indication of a sulfuric acid spill.

Consult MSDS sheets before using any materials. Consult DWI SC-F for further safety related information. Report all accidents to managers or their designated alternates.

APPARATUS AND EQUIPMENT

1. Beakers, borosilicate glass, 250 mL.

2. Liquid scintillation counter - A system permitting spectral analysis as well as particle differentiation is recommended.

3. Mixer, vortex, variable speed.

4. pH paper - Range 1 to 12.

5. Pipets - 1 mL and 5 mL mechanical pipetters.

6. Scintillation cocktail dispenser - Adjustable to deliver 10 mL.

7. Scintillation vials - 20 mL glass vials with Teflon® lined caps.

8. Thermometer - Range 0 to 100°C, metal, factory calibration is adequate.

9. Tubes, centrifuge, borosilicate glass, 50 mL.

10. Tubes, centrifuge, plastic, 50 mL.

11. Wash bottles, 500 mL, or equivalent.

REAGENTS

1. Barium Tracer - a solution containing 1000 to 3000 dpm of barium-133 per gram of
solution.

2. Cocktail - A high efficiency, commercially available, non-hazardous, ready-to-use mineral oil cocktail containing scintillators which is immiscible in water.

3. Hydrochloric acid, 12 M - ACS Reagent grade.

4. Hydrochloric acid, 1 M.

5. Hydrochloric acid, 0.1 M.

6. Radium Solutions - Bench standards and controls are required for calibration and check standards. These solutions are prepared per RP-Std. The ^{226}Ra content or the ^{228}Ra content or both must be traceable to NIST.

7. Sodium Carbonate - ACS Reagent grade.

8. Sodium Carbonate - Saturated solution in water prepared by adding 25 g to 100 ml water; decant solution as it is needed.

9. Strontium Carrier, 1 M, (87.6 mg Sr$^{2+}$/mL) prepared by dissolving 15.85 g SrCl$_2$, 19.46 g SrCl$_2$ · 2 H$_2$O, or 26.66 g SrCl$_2$ · 6 H$_2$O in water to make 100.0 mL of solution.
 NOTE: An 18 mg/mL barium carrier may be substituted for strontium carrier with the approval of the manager or designated alternate.

10. Sulfuric acid, 6.0 M.

11. Water - Demineralized or deionized water or the equivalent.

DETAILED WORK INSTRUCTIONS

General Instructions

1. Record data for each sample on an individual "Determination of Radium, Work Sheet" which is illustrated in Figure 1. Photocopy these forms as necessary.
2. Record the total original sample size, the total concentrate volume, and the aliquot volume being analyzed if the sample is a concentrate.

3. Choose appropriate actions from the list below:

<table>
<thead>
<tr>
<th>Action</th>
<th>For</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceed to Step 4.</td>
<td>Normal Samples</td>
</tr>
<tr>
<td>Proceed to Step 4.</td>
<td>Dilute Samples</td>
</tr>
<tr>
<td>Proceed to Step 13.</td>
<td>Solutions from DWI SP-SW-Main.</td>
</tr>
<tr>
<td>Proceed to Step 13.</td>
<td>High Nitrate Samples.</td>
</tr>
<tr>
<td>Proceed to Step 21.</td>
<td>Sulfate Precipitation.</td>
</tr>
<tr>
<td>Proceed to Step 35.</td>
<td>Concentrating the Precipitate.</td>
</tr>
<tr>
<td>Proceed to Step 43.</td>
<td>Metathesis to Carbonate.</td>
</tr>
<tr>
<td>Proceed to Step 58.</td>
<td>Conversion to Chloride</td>
</tr>
<tr>
<td>Proceed to Step 66.</td>
<td>Preparation for Counting.</td>
</tr>
<tr>
<td>Proceed to Step 74.</td>
<td>Submission for Counting.</td>
</tr>
<tr>
<td>Proceed to Step 81.</td>
<td>Blanks.</td>
</tr>
<tr>
<td>Proceed to Step 86.</td>
<td>Controls and Bench Standards.</td>
</tr>
<tr>
<td>Proceed to Step 93.</td>
<td>Calibration Solutions.</td>
</tr>
<tr>
<td>Proceed to Step 101.</td>
<td>Selecting Optimal Window.</td>
</tr>
<tr>
<td>Proceed to Step 104.</td>
<td>Barium Tracer Preparation.</td>
</tr>
<tr>
<td>Proceed to Step 111.</td>
<td>Cleanup.</td>
</tr>
</tbody>
</table>

4. Consult your manager or designated alternate regarding non-routine samples. A usual aliquot will have a volume of 1-2 L. The aliquot size of non-routine samples may vary.

5. Measure out a suitable sample aliquot into a beaker.

6. Record the aliquot size.

7. Acidify using $10 \pm 1 \text{ mL of } 12 \text{ M HCl}$. The resultant pH should be ≤ 1 and may be checked with pH paper.
8. Add \(\approx 1 \text{ mL} \) Barium Tracer.

9. Record the mass added to the nearest 0.2 mg.

10. Evaporate to reduce the volume to 200 mL or less, if necessary.

11. Transfer the sample to a 250 mL beaker, if necessary.

Removal of Nitrate

13. Measure out a suitable aliquot into a 250 mL beaker. Purer crystal formation and better separation are achieved in a low nitrate matrix.

14. Record the aliquot size.

15. Add 15 \(\pm \) 2 mL 12 M HCl.

16. Add \(\approx 1 \text{ mL} \) Barium Tracer.

17. Record the mass added to the nearest 0.2 mg.

18. Evaporate to dryness on a hotplate. Reduce the heating rate near the end of the evaporation to minimize spattering.

19. Repeat Steps 15 & 18 twice more.

20. Add 10 mL 12 M HCl.

Sulfate Precipitation
21. Dilute the aqueous solution to 200 ± 10 mL with water.

The actions described should result in a solution containing (0.6 ± 0.1) M HCl in which precipitate formation will be excellent.

22. Heat to 60-90 °C on a hot plate.

The temperature may be checked using the thermometer.

23. Add 1.00 ± 0.05 mL Strontium Carrier.

Non-routine samples may require changes in volume or type of carrier.

24. Record the volume added.

25. Heat at 60-90°C for ≈ 30 min.

The actions described should result in a solution containing (0.15 ± 0.02) M H$_2$SO$_4$ in which precipitate formation will be excellent.

26. Add 5 ± 1 mL 6M H$_2$SO$_4$.

This time may be needed if an estimate of 224Ra concentration becomes necessary.

27. Record the time on the worksheet.

28. Heat at least 60 min at 60-90°C.

29. Turn off heat.

Use of an electrically timed switch for remote shutoff followed by cooling overnight is acceptable.

30. Do not disturb until cool.

Radium (as well as barium and strontium) is in the precipitate as the sulfate:

$$\text{Ra}^{2+} + \text{SO}_4^{2-} \rightarrow \text{RaSO}_4 \downarrow$$

31. Skip to Step 35 if a precipitate is visible in the bottom of the beaker.

A dense precipitate should be present in the bottom of the beaker. The presence of some anions may increase the solubility of SrSO$_4$ so that no precipitate is visible.

32. Heat to 60-90 °C on a hot plate.
33. Add 2.00 ± 0.10 mL Strontium Carrier.

NOTE: Consult your manager or designated alternate if no precipitate forms in the solution after one repeat of Steps 27-31 as directed in Step 34.

34. Go once to Step 27 and proceed stepwise through to Step 34.

Concentrating the Precipitate

35. Decant most of the supernate slowly and reserve it as potentially radioactive waste.

36. Transfer the precipitate to a 50 mL centrifuge tube with a stream of water.

37. Wash the precipitate with ≈ 10 mL water. Use of a vortex mixer facilitates washing the precipitate. Washing removes residual sulfate which could otherwise form a precipitate upon dissolution of the precipitate.

38. Centrifuge.

39. Decant the liquid and reserve it as potentially radioactive waste.

40. Repeat Steps 37-39 twice more.

41. Test pH of last wash with pH paper.

42. Repeat Steps 37-39 until pH > 4.

Metatheses to Carbonate
43. Add 5 ± 1 mL saturated Na₂CO₃ solution to the precipitate.

44. Add 0.5 ± 0.2 g Na₂CO₃ with mixing. A total of ≈2 g Na₂CO₃ will be added during the course of 1 h.

45. Heat to 60-90°C for ≈20 min in a water bath, swirling occasionally. Use of a vortex mixer facilitates swirling the precipitate.

46. Add 0.5 ± 0.2 g Na₂CO₃.

47. Repeat Steps 45-46 two more times. Solid Na₂CO₃ should be visible at the end of this heating step.

48. Heat for 30 min after the last addition.

49. Cool.

50. Centrifuge for 10 ± 5 min at 2000 ± 400 rpm. Radium, barium, and strontium are in the precipitate as carbonates.

51. Decant the liquid and reserve it as potentially radioactive waste.

52. Wash the precipitate with ≈10 mL H₂O. Use of a vortex mixer facilitates washing the precipitate. Washing removes excess sulfate which could otherwise form a precipitate upon acidification.

53. Centrifuge for 10 ± 5 min at 2000 ± 400 rpm.

54. Decant the liquid and reserve it as potentially radioactive waste.

55. Repeat Steps 52-54 twice more.

56. Test the pH of last wash solution with pH paper.
57. Repeat Steps 52-54 until pH < 8.

Conversion to Chloride

58. Add (1.0 ± 0.1) mL 1 M HCl.

59. Add 12 M HCl dropwise if solids remain until bubbling ceases.

The acid dissolves radium (as well as Ba and Sr):

\[
\text{RaCO}_3 + 2 \text{HCl} \rightarrow \text{RaCl}_2 + \text{H}_2\text{O} + \text{CO}_2 \uparrow
\]

60. Skip to Step 64 if the solution is transparent.

The solution should be transparent; translucence or opacity indicates undissolved sulfates are present.

61. Add 4 mL H₂O.

62. Add solid Na₂CO₃ until bubbling ceases.

NOTE: Consult your manager or designated alternate if the solution is not transparent after one repeat of Steps 43-60.

63. Go once to Step 43 and proceed stepwise through to Step 60.

64. Evaporate to dryness.

65. Record the time.

This is the backup time for grow-in calculation. No ²²²Ra is present at this time.

Preparation for Counting

66. Dissolve solids in 5.00 ±0.05 mL 0.1 M HCl.
67. Transfer solution to an LSC vial.

68. Rinse all surfaces of the centrifuge tube using 5.00 \(\pm \) 0.05 mL 0.1 M HCl.

69. Transfer rinse solution to the same LSC vial. All Ra\(^{2+}\), Ba\(^{2+}\), and Sr\(^{2+}\) is now present as chloride in 10.0 mL 0.1 M HCl in the LSC vial.

70. Add 10 mL LSC cocktail to the LSC vial.

71. Cap tightly with a Teflon™ lined lid. A drop of glue may be applied to the outside of the cap to assure that the cap remains tight.

72. Do not shake the mixture. Shaking disturbs the equilibria.

73. Record the time on the worksheet. This is the time used in calculating the start of the grow-in period for \(^{226}\)Ra progeny.

Submission for Counting

74. Set the LSC vials aside for grow-in of radium daughters. Negligible correction will be necessary for \(^{228}\)Ac after 48 h or \(^{222}\)Rn after 28 d grow-in.

75. Delay counting the LSC vials for an additional 6 hours if they have been shaken or otherwise disturbed. Shaking disturbs the equilibria.

76. Compute the volume of each sample aliquot and furnish that information to the counting room. Direct that results be as \(\mu\)Ci per unit volume of sample unless other units are required.
77. Submit the vial for gamma scan for ^{133}Ba and ^{228}Ac as well as any other gamma emitters after 2 days grow-in.

78. Submit for alpha LSC scan for ^{226}Ra progeny after 4 days grow-in.

79. Calculate results as described under "Calculations".

80. Dispose of vial contents as potentially radioactive analysis residue after results have been logged out.

Blanks

81. Add 190 ± 10 mL water to a 250 mL beaker.

82. Add 10 ± 1 mL 12 M HCl.

83. Add ≈ 1 mL Barium Tracer.

84. Record the mass of Barium Tracer added to ± 0.2 mg

85. Proceed to Step 21.

Controls and Bench Standards

86. Add 190 ± 10 mL water to a 250 mL beaker.

87. Add 10 ± 1 mL 12 M HCl.

Longer grow-in is acceptable if customer deadlines can be met.
88. Add \(\approx 1 \text{ mL} \) Barium Tracer.

89. Record the mass of Barium Tracer added to \(\pm 0.2 \text{ mg} \).

90. Add \(\approx 1 \text{ mL} \) of a Control or Bench Standard.

91. Record the mass of Control or Bench Standard added to \(\pm 0.2 \text{ mg} \).

92. Proceed to Step 21.

Calibration using Radium-226

93. Obtain a solution of radium-226 in hydrochloric acid which is traceable to NIST.

94. Prepare a sufficient quantity of diluent containing 1.7 mg BaCl\(_2\) per mL of 0.1 M HCl.

95. Prepare at least four dilutions by mass of the radium solution per DWI RP-Std so as to obtain a range of solutions from \(\approx 0.01 \) to \(\approx 10.00 \) Bq \(^{226}\text{Ra}\) in 10 mL diluent in LSC vials.

96. Add 10 \(\pm 0.1 \text{ mL} \) LSC cocktail.

97. Cap with a Teflon® lined lid.

98. Secure the lids in place.

NIST SRM 4965 is acceptable. This SRM consists of \(\approx 5 \text{ g} \) of solution with a nominal concentration of 31 Bq/g.

The concentrations of \(^{226}\text{Ra}\) in solutions toward the higher end of the range may be confirmed by direct gamma ray spectrometric analysis.

A drop of glue may be used on the outside of the cap to assure that it remains tightly sealed.
99. Do not shake.

100 Record the time and date on the worksheet.

Shaking disturbs the equilibria.

This information is needed to calculate the grow-in correction.

Selecting Optimal Window

101 Count a radium standard for fifty minutes to generate a sample spectrum.

102 Set the optimal window as follows: the upper limit is located where the activity in the large peaks returns substantially to baseline; the lower limit is the same distance below the alpha peak maximum as the upper boundary is above it.

103 This window will be used for subsequent calibration and analysis with the peak maximum identified on a bench standard or control for each set of vials.

Manufacturer's instructions should be followed. The region of greatest alpha activity will be obvious as evidenced by three large, overlapping peaks at the high end of the energy spectrum. The calibration factor should be at least 6 cpm/pCi with a background not exceeding 10 cpm. A typical width is 200 Kev.

Barium Tracer Preparation

104 Obtain an aliquot of 133Ba solution.

105 Submit the solution for gamma analysis if the concentration is not know.
Dilute sufficient solution with 1 M HCl to give approximately 50 mL of solution containing 1000 to 3000 dpm/g.

Weigh out ≈ 1 mL of diluted solution into a glass LSC vial.

Record the mass of solution in a laboratory notebook.

Dilute with 0.1 M HCl to 10.0 ± 0.1 mL.

Submit for gamma spectrometric determination of the dpm 133Ba per sample.

This geometry should match that of the samples.

Results determine the comparator activity which will be used to calculate radium chemical yields.

Cleanup

Dispose of reserved solutions as directed in DWI SC-D or by management or designated alternate.

Wash all glassware using a mild detergent and a non-metallic brush.

Do not scratch beakers used for the sulfate precipitation as crystal formation and growth may be adversely affected.

Rinse all glassware with water.

Air dry all glassware protected from dust.
REFERENCES

METHOD HISTORY

The method was adapted from the above references, especially Reference 2, to INEL sample matrices and sample pretreatments by Frederick A. Hohorst in the first quarter of 1995. Results of the adaptation may be found in corporation correspondence under FAH-03-95, FAH-05-95, and FAH-07-95. Additional information may be found in Special Technologies Controlled Document Copy No. 82, a bound record notebook.
CALCULATIONS

A calculational program is available on several desktop computers within the department. Consult your manager or designated alternate for the location of copies.

Instrument Calculations

The counting results for the samples shows which counting system was used to measure the set of vials. (Cf. Figures 2, 3, and 4.) Based on that entry, proceed to either Section A, B, or C below, then to Section D:

A. Network Alpha and Gamma Acquisition and Analysis System

The Network Alpha and Gamma Acquisition and Analysis System (NETSPEC) provides quantitative determinations of radioisotopes in submitted samples. Important quantities are the year (1), month (2), day (3), hour (4), and minute (5) the analysis began. Also printed are the nuclide (6), the units (7), the activity (8), the total uncertainty (9) and the minimum detectable level, MDL, if determined (10). These ten items are needed to calculate the results of determinations. Consult Figure 2 for a typical printout.

B. Wallac NSI, Model 1400 DSA

The liquid scintillation counter is to be set up and operated according to the manufacturer’s instruction. Those instructions plus the instructions in this DWI (Steps 74-80 and 101-103) will permit setting of a protocol containing a window to be used for counting the samples, blanks, and controls for radium-226 progeny. The instrument will differentiate the beta counts from the alpha counts so that the selected window will state only the alpha counts (1). The printout also will state the duration of each count (2) and the clock time when the first count of the three counts on each sample began (3). The duration in seconds must be converted to minutes. These three items are needed to calculate the results of the determinations. Consult Figure 3 for a typical printout.

C. Beckman Model LS 6500

The liquid scintillation counter is to be set up and operated according to the manufacturer’s instruction. Those instructions plus the instructions in this DWI (Steps 74-80 and 101-103) will permit setting of a protocol containing a window to be used for counting the samples, blanks, and controls for radium-226 progeny. The instrument will differentiate the beta counts from the alpha counts so that the selected window states
only the alpha count rate (1). The printout also will state the duration of each count in minutes (2), the clock time when the first sample began counting (3), and the elapsed time since the first count began until the beginning of the first of the three counts of each vial (4). These four items are needed to calculate the results of the determinations. Consult Figure 4 for a typical printout.

D. Personal Calculations:

The quantities defined below are necessary in calculations of the quantity of 226Ra and 228Ra present in the samples and standards:

Use Equation 1 below to calculate the volume, V, of each sample:

$$V_{ml} = \frac{\text{Aliquot Analyzed}_{ml} \times \text{Initial Volume}}{\text{Reduced Volume}}$$ \hspace{1cm} (1)

Use Equation 2 below to calculate the chemical yield, CY, for each sample:

$$CY = \frac{\text{Mass Tracer}_{mg} \times \text{Sample Activity}^{133}\text{Ba}}{\text{Mass Tracer}_{mg} \times \text{Comparitor Activity}^{133}\text{Ba}}$$ \hspace{1cm} (2)

The chemical yield for radium calculated above applies to subsequent calculations for both radium-226 and radium-228.

Use Equation 3 below to calculate the concentration of 228Ra in the sample:

$$\text{Conc}^{228}\text{Ra} = \frac{\text{Activity}^{228}\text{Ac}_{\mu Cl}}{CY \times V_{\text{Volume}_{ml}}} \times \frac{1}{[1 - e^{-\ln 2 \times t_w / 6.13}]}$$ \hspace{1cm} (3)

If the sample counting begins more than 48 hours after the vial is sealed, the last term in Equation 3, which corrects for incomplete attainment of secular equilibrium, may be set to 1. Furthermore, if the proper units have been furnished to the counting room, results may be
read directly from that printout since ^{228}Ac equals ^{228}Ra. Hence, the only hand calculation needed is division by the yield under these circumstances. See Figures 2 and 3 for examples.

Use Equation 4 below to calculate the concentration of ^{226}Ra in the sample:

$$
\text{Conc}^{226}\text{Ra} = \frac{(G - B) \times CF \times 60}{Volume_{mL} \times CY \times t} \times \frac{1}{[1 - e^{-\ln 2 \times t_{pr} / 91.764}]} \quad (4)
$$

Use Equation 5 below to calculate the relative uncertainty of the ^{226}Ra activity in the sample:

$$
U_{Ra226\text{Total}} = \sqrt{U_{Ra226}^2 + U_B^2 + U_{Std}^2 + U_{Ba133}^2 + U_d^2 + U_v^2 + U_n^2} \quad (5)
$$

where:

- $U_{Ra226\text{Total}}$ = The relative uncertainty corresponding to one standard deviation of the calculated activity for radium-226.
- U_{Ra226} = The relative uncertainty of the counts of the ^{226}Ra sample calculated from the square root of the gross counts divided by the gross counts.
- U_B = The relative uncertainty of the counts of the ^{226}Ra blank calculated from the square root of the gross counts divided by the gross counts.
- U_{Std} = The relative uncertainty in the standard.
- U_{Ba133} = The relative uncertainty in the yield of the ^{133}Ba is set at 11.2%. It is derived from the total error in each determination of ^{133}Ba and each propagated total uncertainty to give an overall uncertainty. The uncertainty of each determination consists of
about 1% random uncertainty and 7% systematic uncertainty.

\[U_d = \]

The relative uncertainty in the decay factors and the ingrowth corrections.

\[U_v = \]

The relative uncertainty of the initial sample volume measurement and dilutions and transfers. This value is set at 5% due to the number of sample transfer steps.

\[U_n = \]

The relative uncertainty in the counting statistics as referenced to the current background value. As the sample count rate approaches background, the error increases exponentially. When the sample count rate is approximately three times the one sigma value of the background, this term becomes insignificant. It is calculated using:

\[
U_n = \sqrt{\frac{C_{Ra226}}{T^2} + \frac{C_B}{T^2}}
\]

(6)

The absolute uncertainty is calculated by multiplying the relative uncertainty by the calculated activity.

The sample detection limit is calculated from the equation:

\[
MDA_{Ra226} = \frac{(2.71 + 4.65 * \sqrt{B}) * Conversion Factor}{t * CF * V * Y}
\]

(7)

where the conversion factor is that necessary to convert to the desired counting units, and
B = Gross counts of the background

t = gross count time (s, same for sample and background)

CF = Calibration factor,

V = sample volume (mL)

Y = yield as determined by the ratio of 133Ba found to that added.

Assemble and collate results for submission as requested by the manager or designated alternate.
DETERMINATION OF RADIIUM WORK SHEET

4820-001 Sample Name: ______________________________________

Log No.: ______________________________________

Analyst: ______________________________________

Date Commenced: ______________________________________

Type of Sample: ______________________________________

Preparation Information

Sample Preconcentration: ________ mL concentrated to ________ mL.

Amount of sample or concentrate used for analysis: ________ mL or g.

Interim sample container ID: ________

Mass of Barium Tracer added: ________ g.

Volume of Carrier added: ________ mL.

Time precipitated from solution: ________ on _____/____/____

Time evaporation to dryness: ________ on _____/____/____

Time sealed in LSC vial under Cocktail: ________ on _____/____/____

Unless noted otherwise, calculations will be in microcuries per milliliter.

Additional Notes:

__

__

__

__

__

__

Figure 1
Gamma Spectrum 1995-0322-1607.05

Log Number: 93084
Sample: 5

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>pC/1</th>
<th>Uncrt</th>
<th>%Uncrt</th>
<th>%Rand</th>
<th>%Syst</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA133</td>
<td>3.14E+2</td>
<td>2.48E+1</td>
<td>7.9</td>
<td>0.8</td>
<td>7.1</td>
</tr>
<tr>
<td>Pb212</td>
<td>3.72E-1</td>
<td>1.36E+0</td>
<td>155.7</td>
<td>150.2</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>* 8.75E-1</td>
<td>1.10E+0</td>
<td>12.6</td>
<td>6.7</td>
<td>5.9</td>
</tr>
<tr>
<td>Pb214</td>
<td>8.75E+0</td>
<td>1.10E+0</td>
<td>12.6</td>
<td>6.7</td>
<td>5.9</td>
</tr>
<tr>
<td>Bi212</td>
<td>-1.78E+0</td>
<td>2.33E+0</td>
<td>130.8</td>
<td>125.1</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>* 4.10E+0</td>
<td>1.01E+0</td>
<td>16.4</td>
<td>10.7</td>
<td>5.6</td>
</tr>
<tr>
<td>Bi214</td>
<td>6.18E+0</td>
<td>1.01E+0</td>
<td>16.4</td>
<td>10.7</td>
<td>5.6</td>
</tr>
<tr>
<td>Ra223</td>
<td>-4.99E+1</td>
<td>6.27E+1-</td>
<td>125.7</td>
<td>119.7</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>* 8.67E+0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ra226</td>
<td>2.17E+1</td>
<td>4.37E+0</td>
<td>20.1</td>
<td>15.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Ac228</td>
<td>1.81E+1</td>
<td>2.50E+0</td>
<td>13.8</td>
<td>7.6</td>
<td>6.2</td>
</tr>
</tbody>
</table>

Figure 2
Service Waste Samples

Wallac 1400 GSA ver 2.2 S/N 4100034

Counting mode: CPM
Isotope(s): As76
Amount: 10-100
g
Protocols
: Ra-226 Determination
: Counting time: 3000
Repetitions: 3
Cycles: 1
Replicates: 1
2 sigma %: 0.01
Minimum cam: 0:00 Checking time: 10
Advanced modes: PSA
PSA Level: 180

Output to Printer:
POS, TEXT, TIME, STIME, SDRE, CPML, CPMP, CFCT1, CFCT2, PSALEVEL
Additions to Printer:
Header, Listing
Output to Display:
POS, TEXT, TIME, STIME, SDRE, CPML, CPMP, CFCT1, CFCT2, PSALEVEL
Additions to Display:
Header, Listing
Path of File:
POS, TEXT, TIME, STIME, SDRE, CPML, CPMP, CFCT1, CFCT2, PSALEVEL
Additions to File:
Spectrum
Path of W3 file:
POS, TEXT, TIME, STIME, SDRE, CPML, CPMP, CFCT1, CFCT2, PSALEVEL
Header:
Service Waste Samples
Spectrum:
Beta, Alpha
Window 1:
550-750 /Beta
Window 2:
550-750 /Alpha
C FCT1 = Gross B
C FCT2 = Gross A

Unknown samples:

<table>
<thead>
<tr>
<th>Pos</th>
<th>Test</th>
<th>Time</th>
<th>SDRE</th>
<th>As76</th>
<th>CPM 1</th>
<th>Gross B</th>
<th>CPM 2</th>
<th>Gross A</th>
<th>PSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VI Blank</td>
<td>08:53</td>
<td>3000</td>
<td>720.12</td>
<td>53.7</td>
<td>0.3</td>
<td>26</td>
<td>7.3</td>
<td>346</td>
</tr>
<tr>
<td>1</td>
<td>VI Blank</td>
<td>09:24</td>
<td>3000</td>
<td>719.66</td>
<td>53.4</td>
<td>0.3</td>
<td>19</td>
<td>6.9</td>
<td>346</td>
</tr>
<tr>
<td>1</td>
<td>VI Blank</td>
<td>11:48</td>
<td>3000</td>
<td>719.72</td>
<td>51.2</td>
<td>0.4</td>
<td>19</td>
<td>6.3</td>
<td>316</td>
</tr>
</tbody>
</table>

5000 | 719.86 | 52.8 | 0.4 | 19 | 6.8 | 346 | 180 | REPEATS |

Pos | Test | Time | SDRE | As76 | CPM 1 | Gross B | CPM 2 | Gross A | PSA |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>VT Control #2</td>
<td>01:23</td>
<td>3000</td>
<td>723.19</td>
<td>66.3</td>
<td>1.0</td>
<td>52</td>
<td>59.3</td>
<td>2594</td>
</tr>
<tr>
<td>7</td>
<td>VT Control #2</td>
<td>02:19</td>
<td>3000</td>
<td>726.68</td>
<td>65.4</td>
<td>1.0</td>
<td>49</td>
<td>61.4</td>
<td>3070</td>
</tr>
<tr>
<td>7</td>
<td>VT Control #2</td>
<td>03:19</td>
<td>3000</td>
<td>722.04</td>
<td>64.1</td>
<td>1.3</td>
<td>63</td>
<td>60.6</td>
<td>3028</td>
</tr>
</tbody>
</table>

3000 | 722.64 | 65.3 | 1.1 | 55 | 60.6 | 3028 | REPEATS |

Pos | Test | Time | SDRE | As76 | CPM 1 | Gross B | CPM 2 | Gross A | PSA |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>VO Control #4</td>
<td>04:05</td>
<td>3000</td>
<td>715.15</td>
<td>83.7</td>
<td>2.1</td>
<td>106</td>
<td>137.0</td>
<td>6521</td>
</tr>
<tr>
<td>8</td>
<td>VO Control #4</td>
<td>04:57</td>
<td>3000</td>
<td>717.92</td>
<td>82.6</td>
<td>1.9</td>
<td>95</td>
<td>157.5</td>
<td>6725</td>
</tr>
<tr>
<td>8</td>
<td>VO Control #4</td>
<td>05:44</td>
<td>3000</td>
<td>716.55</td>
<td>83.6</td>
<td>2.5</td>
<td>124</td>
<td>136.4</td>
<td>6826</td>
</tr>
</tbody>
</table>

3000 | 716.21 | 85.7 | 2.2 | 103 | 157.0 | 6249 | REPEATS |

<table>
<thead>
<tr>
<th>Pos</th>
<th>Test</th>
<th>Time</th>
<th>SDRE</th>
<th>As76</th>
<th>CPM 1</th>
<th>Gross B</th>
<th>CPM 2</th>
<th>Gross A</th>
<th>PSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 VO Control #4</td>
<td>06:38</td>
<td>3000</td>
<td>718.21</td>
<td>85.7</td>
<td>2.2</td>
<td>103</td>
<td>157.0</td>
<td>6249</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.
ID = SW RA226 F AH
COMMENT: FAH 3-29-95
USER: 20
PRESET TIME: 50.00
DATA CALC: CFM H# : YES SAMPLE REPEATS: 3
COUNT BLANK: NO IC# : NO REPLICATES : 1
TWO PHASE: NO AQC : NO CYCLE REPEATS : 1
SCINTILLATOR: LIQUID LUMEX: NO
LOW LEVEL: YES
HALF LIFE CORRECTION DATE: none
HALF LIFE CORRECTION DATE: none

ISOTOPE 1: 226Ra
%ERROR: 0.00
A FACTOR: 1.000000 BKG. SUB: 0
B FACTOR: 1.000000 BKG. SUB: 0
ALPHA-BETA DISCRIMINATION: YES
CALIBRATION: 226Ra 3-29-95
LEFT RVALUE LIMITS: 1.19 - 500.00
RIGHT RVALUE LIMITS: 1.20 - 500.00
PULSE HEIGHT LIMITS: 0.0 - 683.8
PRIMAR Y COUNT SOURCE: ALPHA

<table>
<thead>
<tr>
<th>SAM</th>
<th>POS</th>
<th>TIME</th>
<th>H#</th>
<th>CPM</th>
<th>%ERROR</th>
<th>% TIME</th>
<th>226RA*</th>
<th>LUMEX</th>
<th>ELAPSED</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 20-1</td>
<td>50.00</td>
<td>185.9</td>
<td>a</td>
<td>0.64</td>
<td>-35.36</td>
<td>4.36</td>
<td>51.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.18</td>
<td>7.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 20-1</td>
<td>50.00</td>
<td>187.5</td>
<td>a</td>
<td>0.66</td>
<td>34.82</td>
<td>4.86</td>
<td>102.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.38</td>
<td>7.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 20-1</td>
<td>50.00</td>
<td>189.4</td>
<td>a</td>
<td>1.12</td>
<td>26.73</td>
<td>5.08</td>
<td>153.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.08</td>
<td>8.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeat Average CPM for 226Ra:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>12.88</td>
</tr>
<tr>
<td>2 20-2</td>
<td>50.00</td>
<td>184.5</td>
<td>a</td>
<td>0.98</td>
<td>28.37</td>
<td>3.77</td>
<td>204.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.14</td>
<td>7.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 20-2</td>
<td>50.00</td>
<td>186.2</td>
<td>a</td>
<td>0.98</td>
<td>28.37</td>
<td>3.84</td>
<td>225.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.30</td>
<td>8.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 20-2</td>
<td>50.00</td>
<td>185.8</td>
<td>a</td>
<td>1.02</td>
<td>28.01</td>
<td>3.56</td>
<td>306.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.08</td>
<td>7.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeat Average CPM for 226Ra:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>12.84</td>
</tr>
<tr>
<td>7 20-7</td>
<td>50.00</td>
<td>186.6</td>
<td>a</td>
<td>24.34</td>
<td>5.73</td>
<td>0.64</td>
<td>968.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34.32</td>
<td>3.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 20-7</td>
<td>50.00</td>
<td>187.1</td>
<td>a</td>
<td>23.10</td>
<td>5.88</td>
<td>0.70</td>
<td>1019.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33.90</td>
<td>3.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 20-7</td>
<td>50.00</td>
<td>187.6</td>
<td>a</td>
<td>23.98</td>
<td>5.78</td>
<td>0.72</td>
<td>1070.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50.86</td>
<td>3.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeat Average CPM for 226Ra:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.81</td>
</tr>
<tr>
<td></td>
<td>53.03</td>
</tr>
<tr>
<td>8 20-8</td>
<td>50.00</td>
<td>192.7</td>
<td>a</td>
<td>61.28</td>
<td>3.61</td>
<td>0.79</td>
<td>1121.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111.50</td>
<td>2.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 20-8</td>
<td>50.00</td>
<td>193.7</td>
<td>a</td>
<td>60.70</td>
<td>3.63</td>
<td>0.87</td>
<td>1172.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>104.46</td>
<td>2.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 20-8</td>
<td>50.00</td>
<td>192.6</td>
<td>a</td>
<td>43.26</td>
<td>3.56</td>
<td>0.88</td>
<td>1223.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>103.86</td>
<td>2.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeat Average CPM for 226Ra:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>61.75</td>
</tr>
<tr>
<td></td>
<td>106.61</td>
</tr>
</tbody>
</table>

INSTRUMENT CALIBRATION: Mini 21 APR 1995 05:27
Calibration successful

Figure 4.