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where M is the magnetization, y the gyromagnetic ratio (2.93 GHz/kG for Fe), D is the
spin wave stiffness constan~ n an integer (1,2, . . .), and L the slab thickness. Note
that the FMR frequency corresponds to n = O. A.Isoobserved is the ‘surface’ magnon
at a frequency

O’= y’{H~ + 4xM] + (2nM)2[l-exp(-2qL)l } (2)

where q is the wavevector determined by the scattering geometry. Note that :for q = O “
Eq. 2 also yields the FMR frequency.

In the limit of very thin films (L < 100~) it can be shown that all the fkquencies
predicted by Eq. 1 lie outside the frequency range probed by Brillouin scattering these
modes will therefore not be considered further. All modes in systems consisting of
very thin layers can therefore be viewed as arising tim the interaction of a *e
described by Eq. 2 in each layer, the frequency of these modes is given by the FMR
frequency with a perturbation due to the finite wavevector. In uncoupled magnetic
superlattices the dynamic interaction between these modes gives rise to the, now well
understood[3, 4] btid of modes and the unusual properties of the .@ace magnon. It
is worth noting that because Eq. 2 is a small perturbation to the FMR mode, it is valid
in zeroth order, to treat the resonance of each layer as that of a giant spin in which the
whole layer precesses in phase. This conceptwd simplification enables the complex
systems to be discussed bdow to be viewed in a simple albeit qualitative picture. The
complete quantitative description is of course important when extracting the magnitude
of the various relevant parameters.

During the past few years the magnetic coupling of magnetic layers separated by a
non-magnetic spacer has amacted great attention mainly due to possible technological
applications of the resulting giant magnetoresistance. It is interesting that coupling
across nonmaawetic layers was first observed using Brillouin scattering by Griinberg[7]
long before giant magnetoresista.nce was discovered. The coupling between magnetic
fdms has been phenomenologically identified as bikwar and biquadratic corresponding
to terms J1 (M1*M~ and J, (M1*M~2, respectively, in the energy. The origin of the
bilinear coupling is now be~eved to stem from 1KK% type oscillations in the spins of
the spacer laye~ it gives rise to ferromagnetic or antiferromagnetic ()+) alignment
between neighboring layers. The origin of biquadratic coupling is stiIl being debated,
it gives rise to 90° alignment of the layers. Independent of their origin these new terms
introduce a host of novel magnetic phenomena.

In antiferromagneticallv bilinearly coupled superlattices it has led to the first
observation of a surface” instability predicted decades ago[8]. The field-induced
rearrangement of the magnetization of the near-surface layers, called a surface spin
flop, Ieqds to a complex mode structure which we investigated with Brillouin scattering
from Fe/Cr superlarnces.[9] Experimental spectra will be presented and compared
with calculations. However, although they can be qualhaavely reproduced
theoretically, their comple,xi~ do not allow the physical parameters to be reliably
extracted.

The complexities associated with the use of Brillouin scattering to extract
quantitative values of the magnetic parameters will be illustrated with a study of biIayers
of Fe/Cr/Fe.[ 10] Typical mode frequencies obtained by Bx-illouiIIscattering are shown
in Fig 2, the symbok are measured fkquencies and the full lines are the result of fitting
procedures. Emphasis will made on the error determination of the parameters obtained.

The final example is the magnetization and resonance frequencies of arrays of
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submicron Fe magnetic dots investigated using Brillouin light scattering (BLS) and
L~a@3t0@tiC Kem Effect (MOI@. A crucial issue in these systems is the possibility
of coup!ing between the dots. We have investigated inter-dot coupI.ing by studying the
effect of the symmetxy of the dots anays. Bu measurements on square and hexagonal
Fe arrays showed substantial two-fold anisotropies, inconsistent with these array
symmernes. By fabricating dots with different aspect ratios we fmd that a large
anisotropy can be induced along the long axis of the dots which may not coincide with
the array axes. This anisotropy leads to clear two-fold anisotropy patterns in the
angular dependence of the Brillouin frequencies as is shown in Fig 3. The presence of
anisotropy was confirmed using MOIQ Fig. 4 shows the magnetization loops
measured along the long (easy) and short (hard) axes.

The field dependence of the magnetic resonances observed by BLS. are fulIy
explained by treating the observed modes as the resonances of isolated ellipsoids.[11]

u’= Y’( l&4z(NY-NJM] @+47c(Nx-NJvi] } (3)

where Ni (i = X, y, Z) are the appropriate demagnetizing factors. In Fig 5 the
experimental BLS results fm cimular dots and for elliptical dots with the field along the
hard and easy axes are shown. The full lines are fits to Eq. 3 and the resulting
demagnetizing factors are consistent with those predicted by shape anisotropy
theory.r121

W; ;on;lude tha~ although interdot coupling may be presen~ its magnitude is below
the accuracy of the present experiments. ~s conclusion contrasts with that found in
Refs. 13 and 14 where the BLS results were interpreted as an indication of interdot
couplin~ possible origins of the discrepancy will be discussed.

Work at ANL supported by the U.S. Dep. of Energy, BES, Mat. Sci. w-3l-109-
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Fig 1 Scattering geometry utilized in
Brillouin experiments.
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Fig. 4 Kerr loops for a sample of
elhptical dots with the field along the
easy and hard axes.
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Fig 5 Field dependence of magnons
for (a) circular and (b) elliptical dots
with the field aIong the easy and
hard axes. Symbols are experimental
dat~ lines are fits using Eq.3
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