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Abstract

JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear

mechanics problems. A set of continuum equations describes the nonlinear mechanics involving

large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations.
The method is implemented in a two-dimensional setting with various methods for accelerating

convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform
strain element is used with hourglass stiffness to control the zero-energy modes. This report

documents the elastic and isothermal elastic/plastic material model. Other material models,
documented elsewhere, are also available. The program is vectorized for efficient performance

on Cray computers. Sample problems described are the bending of a thin beam, the rotation
of a unit cube, and the pressurization and thermal loading of a hollow sphere.
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1. Introduction

1.1 Perspective

J AC2D is a finite element computer program for solving large deformation, tem-

perature-dependent quasi-static mechanics problems in two dimensions. A nonlinear
conjugate gradient technique (CG technique) is used to solve the governing nonlinear
equations. This report describes the material model for elastic and isothermal elastic-
plastic behavior with combined kinematic and isotropic hardening. Other material mod-
els, documented elsewhere, are also available. A four-node Lagrangian uniform strain
element is employed with hourglass stiffness to control the zero-energy modes.

JAC2D is very similar to the three-dimensional program JAC3D [1]. The JAC2D and
JAC3D programs are the result of research to develop a reliable solution algorithm for
solving quasi-static problems that executes efficiently on vector-processing computers.
The nonlinear conjugate gradient method selected has proved to be very effective for
solving these problems.

1.2 Background

For the calculation of the nonlinear quasi-static response of solids, there is a need for

efficient and reliable solution methods. In recent years, finite element nonlinear solutions
to static problem have been obtained by using either a modified or unmodified Newton-
Raphson method. Use of these stiffness approaches is troublesome because it is difficult
to decide when to reformulate the stiffness matrix to keep the solution from diverging or
to accelerate the convergence. On the opposite end of the spectrum of solution methods
are indirect iterative methods, which do not involve a stiffness matrix.

The motivation to try indirect iterative solvers comes from several sources. First,

a more robust nmthod than the Newton-Raphson algorithm is needed to solve highly
nonlinear problems involving geometric stiffening due to large deformations, stiffening
and softening due to material response, and sudden changes in stiffness due to contact
surface constraints. Second, there is a need to solve large problems efficiently without a
severe restriction on the number of elements that can be used due to hardware limitations

in storing and retrieving the stiffness matrix from a magnetic disk.

Some of the motivation for trying indirect solution methods comes from observing

the excellent results produced by explicit methods in solving nonlinear transient dynam-
ics problems. These methods have been very efficient in terms of computer resources.
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The data storage and code architecture for dynamics problems are similar to those for in-
direct solution of statics problems. Examples of effective explicit dynamics codes include
HONDO [2], WULFF [3], DYNA2D [4], and DYNA3D [5], and recently, PRONTO2D [6]

and PRONTO3D [7]. The research problem was to apply these concepts to a robust
indirect solution method for nonlinear static problems.

In the early 1960s, indirect solution techniques such as successive overrelaxation,
Gauss-Seidel, and Jacobi methods were tried on linear finite element equations. It was
soon discovered that direct solution procedures (Gaussian elimination, for example) were
much more efficient than indirect techniques if the equations were ordered in an ef-
ficient manner. However, only linear or mildly nonlinear problems were being solved
at that time. Rashid reopened the question of whether to use iterative techniques for
three-dimensional problems. His technique is discussed by Irons [8]. Indirect methods,
if successful for two- and three-dimensional problems, could substantially reduce stor-

age requirements and input-output operations when compared to the stiffness method.
Moreover, the code could be highly vectorized, as demonstrated by the explicit dynamics
codes. A reliable iterative method, even if expensive, is superior to a stiffness approach

that does not reliably produce a solution on the first attempt.

After examining and trying various explicit techniques, the CG technique [9, 10, 11]
was selected for solving highly nonlinear solid mechanics problems. These nonlinear ef-

fects include material nonlinearities and geometric nonlinearities due to large rotations,
large strains, and surfaces that slide relative to one another. The CG technique was

• selected mainly for its reliability. In particular, convergence for a linear problem is

guaranteed (with an infinite-precision machine) in N steps, where N is the number of
unknowns in the problem. Also, various investigators in the field of linear programming
and optimization were using the CG technique with success on very nonlinear prob-
lems [12, 13, 14]. Nonlinear versions of the CG technique are described by Daniel [15]
and Bartels [16]. Several acceleration techniques for the linear CG methods are dis-
cussed in an article by Fletcher and Reeves [12]. The JAC2D implementation of the CG
technique for solving nonlinear equations is discussed in Section 3.3.

In this document, the governing equations are formulated in the current configu-
ration of the body, with particular attention to the rotation of the stress tensor. The

formulation is extremely convenient for the CG method because a stiffness matrix need
not be calculated. Variational statements are then presented that allow a finite element
representation of the equations of equilibrium.

1.3 Program Capabilities

The concepts noted above have been incorporated into the structural mechanics
computer program JAC2D and combined with a variety of ancillary capabilities, which
result in a very versatile computer program.
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1.3.1 Standard Geometry and Results File Format

As a member of the Sandia National Laboratories Engineering Analysis Code Access
System (SEACAS) [17], JAC2D benefits from a rich computational analysis environment.
Geometry and mesh information for the analysis is read from a file in the GENESIS for-
mat [18], which can be produced by a number of mesh generators and other preprocessors.
Results are written to a file in the related EXODUS format [19], which is compatible with
a suite of postprocessors and visualization aids.

1.3.2 Element Birth and Death

The program has the capability to add elements (element birth) and/or delete ele-

ments (element death) at selected times in the solution. This capability is an especially
important feature for evaluating the residual stresses developed as a result of various

manufacturing processes. For example, many electronic assemblies are built up through
a cascade of soldering steps. Two parts are joined with high-temperature solder, then
a third part is added with a lower-temperature solder, and so forth. Using the element

birth capability, this manufacturing process can be realistically modeled, allowing new
parts to appear at each step. In the same manner, changes in residual stress as the
result of milling, drilling, or etching can be realistically modeled with the element death
capability. Mining operations also can be modeled using element death.

1.3.3 Material Models

At the present time, several nonlinear material constitutive models are incorpo-
rated in the program; however, only one is described here. The model is an isothermal
elastic/plastic model with combined kinematic and isotropic hardening, and is widely
applicable. For example, this model is used extensively to describe the response of mate-
rials used in electronic assemblies. It has been successfully used to describe the behavior
of ceramics, rigid polymers, solder at low temperature, and a host of other materials.

The other models are documented separately, and more can be easily added. For a given
problem, any or all of the material models which exist in the code can be used.

1.3.4 Initial Stress

Each material may be assigned an initial value for each component of stress in the
reference configuration. The user may also specify a linear variation of stress in the y-
coordinate direction. Initial stresses are typically specified to be in equilibrium with the

initial boundary conditions. As an option, the user may request that the program calcu-
late an initial equilibrium state before the first load step. In this case, two equilibrium
passes are made prior to beginning the load history; the displacements are zeroed out
and the state variables reinitialized after each pass.
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1.3.5 Kinematic Constraints

The geometric boundary conditions allow nodal points to be rigidly fixed in space
and time or to move in a specified time-dependent manner. This capability allows for

realistic modeling of many quasi-static physical processes. For example, in electronics
assemblies, connectors are often required. The mating of a connector pair consists of

press-fitting a contact pin into a housing. The requirements are that the contact force
be sufficiently high to maintain electrical continuity; however, the stresses in the housing
must remain linearly elastic so that the connector can be reliably used over and over.
Time-dependent boundary conditions applied to the pin in conjunction with a contacg
surface definition between the pin and housing allow this problem to be modeled easily.

1.3.6 Loads

The program has the capability to apply a variety of mechanical time-dependent

and/or time-constant loads to a model. These loads can be point loads, surface pres-
sures, or body forces (arising from acceleration or electromagnetic fields). With these
definitions, a great variety of mechanical loading applications can be modeled.

1.3.7 Thermal Input

The program has the capability to accep*_thermal input defining the temperature
history of the structure. The temperature history can be obtained from a separate
thermal analysis computer program or generated with a user-supplied Fortran program.
If the temperature history is uniform throughout the structure, it can be generated within
JAC2D itself. Tracking the temperature history is important for a variety of applications.
For example, residual thermal stresses can develop during the manufacture of electronic
assemblies that are soldered or brazed. The stresses develop because of (1) the difference
in the thermal expansion characteristics of the various materials in the assembly, or
(2) the transient nonuniform temperature history. When the electronic assembly is in
service, the same problem arises as power is applied or removed. In addition to inducing
stresses by themal expansion, temperature variations can cause variations in the material
response parameters.

1.3.8 Contact Surfaces

The program can also model contacting surfaces. The contact surfaces can be fixed,

they can slide without friction, or they can slide with friction. The surfaces can close
or open as the solution dictates. This capability allows many physical processes, such
as connector insertion, to be realistically modeled. The "fixed" contact surface has also

proven useful for grading element size. This allows for parts of the structure to be very
finely modeled to obtain the required resolution. The remainder of the structure, which
is required to obtain the global response, can be roughly modeled. Thes_ parts are joined
by one or more fixed contact surfaces.

14



1.3.9 Restart

Finally, a capability to restart the solution is also incorporated. The restart can be
used to change many of the problem parameters, thus allowing realistic physical processes
to be modeled easily. For instance, stresses and deformations are generally developed in
an electronic assembly due to manufacturing processes. Environments encountered dur-
ing use impose additional stresses and deformations on the assembly. With the restart
capability, an analysis of the manufacturing environment can be performed just once.

Various subsequent use environments can then be evaluated by restarting from this so-
lution. The stress and deformation state existing in the restart file should be viewed as
a set of equilibrium initial conditions with which to start a problem.

15





2. Governing Equati,_ns

This chapter presents continuum mechanics concepts as a basis for development of
the numerical algorithms in the following chapters. Boldface characters denote tensors.
The order of the tensor may be determined from the context of the equation.

2.1 Kinematics

A material point in the reference configuration Bb with position vector X occupies
position x at time t in the deformed configuration B. This gives rise to the notation
x = x(X,t). The motion from the original configuration to the deformed configuration
shown in Figure 2.1 has a deformation gradient F given by

0x
F = 0--X' [FI > 0 . (2.1)

Applying the polar decomposition theorem to F,

F = VR = RU, (2.2)

U

Bo Bu

R
R F

S v

B
V

Figure 2.1. Original, Deformed, and Intermediate Configurations of a Body.

-
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where V and U are the symmetric, positive definite left and right stretch tensors, re-
spectively, and R is a proper orthogonal rotation tensor. Figure 2.1 illustrates the inter-
mediate orientations defined by the two alternate decompositions of F defined by Equa-
tion 2.2. The determination of R follows from the work of Flanagan and Taylor [20].
The incremental algebraic algorithm to determine R is described in Section 4.2.

The velocity of the material point X is written as v = _¢,where the superposed dot
indicates time differentiation holding the material point fixed. The velocity gradient is
denoted by L and may be expressed as

0v _ 0v 0X _ FF-_ (2.3)L = 0x 0X 0x

The velocity gradient can be written in terms of its symmetric (D) and antisymmetric

(W) parts,
L=D+W . (2.4)

Using the right decomposition from Equation 2.2 in Equation 2.3 gives

L = I_RT+ RIJU-'R T . (2.5)

Dienes [21] denoted the first term on the right side of Equation 2.5 by fl:

fl = I_R T . (2.6)

Both Wand. fl are antisymmetric and represent a rate of rotation (or angular velocity)
about some axes. In general, fl _ W. The difference arises when the last term of Equa-

tion 2.5 is not symmetric. The symmetric part of IJU -1 is the unrotated deformation

rate tensor d as defined below (note that both l) and U -1 are symmetric).

d = _(U1"U-' + U-'U) = RTDR . (2.7)

There are two possible cases that can cause rotation of a material line element: rigid
body rotation and shear. Since total shea.r vanishes along the axes of principal stretch,
the rotation of these axes defines the total rigid body rotation of a material point.

With vector analysis it can be shown that Equation 2.6 represents the rate of rigid
body rotation at a material point (as shown by Dienes). It can also be shown that W
represents the rate of rotation of the principal axes of the rate of deformation D. Since
D and W have no sense of the history of deformation, they are not sufficient to define
the rate of rotation in a finite deformation context.

Line elements in which the rate of shear vanishes rotate solely due to rigid body
rotations. These line elements are along the principal axes of U. A similar observation
is applied below for using Dienes' expression for calculating ft.
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Using the left decomposition of Equation 2.2 in Equation 2.3 gives

L = VV-' + VflV -a (2.8)

Postmultiplying by V yields an expression that defines the decomposition of L into V
and fl:

iV = 9 + Vfl . (2.9)

When the dual vector of the above expression is taken, the symmetric V vanishes to yield
a set of three linear equations for the three independent components of ft.

The antisymmetric part of a tensor may be expressed in terms of its dual vector and

the permutation tensor eij k. Let us define the following dual vectors:

¢0i = eijk_jk (2.10)

and

wi = eijkWjk . (2.11)

Using Equations 2.4, 2.10, and 2.11 in Equation 2.9 results in the expression that
Dienes gave for determining fl from W and V:

w = w - 2[V - I tr V]-lz, (2.12)

where

zi = eijkVjmDmk • (2.13)

Since ll = W if and only if the product VD is symmetric, then the principal axes of
the deformation rate D coincide with the principal axes of the current stretch V. Clearly,
a pure rotation is a special case of this condition since D, and consequently the zi in

Equation 2.13, vanish.

2.2 Stress and Strain Rates

The constitutive model architecture is posed in terms of the conventional Cauchy
stress by adopting the approach of Johnson and Bammann [22] and defining a Cauchy
stress in the unrotated configuration. More detail than is presented here is found in

Flanagan and Taylor [20]. The "true" stress in the deformed configuration is denoted by
T. The Cauchy stress in the unrotated configuration is denoted by _r. These two stress
measures are related by

a = RTTR . (2.14)

Each material point in the unrotated configuration has its own reference frame,
which rotates in such a way that the deformation in this frame is a pure stretch. Then

T is simply the tensor o" in the fixed global reference frame. The conjugate strain rate
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measures to T and a are D and d, respectively. These strain rates were defined by
Equations 2.4 and 2.7, respectively.

The principal of Material Frame Indifference (or objectivity) stipulates that a con-
stitutive law must be insensitive to a change of reference frame [23]. This requires that
only objective quantities may be used in a constitutive law. An objective quantity is one
that transforms in the same manner as the energy conjugate stress and strain rate pair
under a superposed rigid body motion. The fundamental advantage of the unrotated
stress over the true stress is that the material derivative of a is objective, whereas the
material derivative of T is not.

A stress rate, called the Green-Naghdi rate by Johnson and Bammann, ca',: be
derived by transforming the rate of the unrotated Cauchy stress to the fixed global frame
as follows:

= rt R r = T - aT + Tft .

The Green-Naghdi rate is kinematically consistent with the rate of Cauchy stress. This
statement means that O is identical to T in the absence of rigid body rotations.

A distinct advantage of the unrotated reference frame is that all constitutive models
are cast without regard to finite rotations. This greatly simplifies the numerical imple-
mentation of new constitutive models. The rotations of global state variables (e.g., stress
and strain) are dealt with on a global level, which ensures that all constitutive models
are consistent. Internal state variables (e.g., backstress) see no rotations whatsoever.

The drawback to working in the unrotated reference frame is that the rotation tensor
R must be accurately determined. The incremental, algebraic algorithm to accomplish
this task is described in Section 4.2.

2.3 Fundamental Equations

The quasi-static equations of motion for a body are

V. T + pb = 0, (2.16)

where p is the weight density per unit volume and b is a specific (force per weight) body
force vector.

The solution to Equation 2.16 is sought subject to the boundary conditions

u = f(t)on S_, (2.17)

where S,, represents the portion of the boundary on which kinematic quat_tities are spe-
cified (displacement and velocity). In addition to satisfying the kinematic boundary
conditions given by Equation 2.17, the traction boundary conditions must be satisfied as

T. n = s(t) on ST, (2.18)

2O



where ST represents the portion of the boundary on which tractions are specified. The

boundary of the body is given by the union of S_ and ST, and for a valid mechanics
problem, Su and ST have a null intersection.
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3. Numerical Solution Procedure

The solution to the quasi-static problem, described by Equations 2.16, 2.17, and

2.18, is calculated at discrete points in time by obtaining a minimum of a functional
II, which represents the power input to the body. The nonlinear conjugate gradient
method is used to minimize the functional, and the finite element technique is employed

to discretize the problem geometrically. The reader should be familiar with the finite
dement method. If not, numerous texts on the method, such as Bathe and Wilson [24],
can be consulted.

3.1 Time Integration Procedure

Equations 2.16, 2.17, and 2.18 describe a quasi-static theory in which velocities are
retained but the time rates of velocities are neglected. Some quasi-static mechanical pro-
cesses depend on real time, such as those involving viscoelastic and creeping materials.

Others, such as those which involve elastic or elastic/plastic materials, proceed indepen-
dently of the amount of time used in the process. In any event, an incremental solution
in time is used to describe the nonlinear process. For the solution increment going from
time t, to t_+l, an interval of time At is used

At = t,_+a - t,, ,

where n is called the time step (or load step) number.

3.2 The Functional or Objective Function

The goal is to obtain a solution at discrete times by finding the minimum of a
nonlinear functional that represents the fundamental equations. We begin in defining
the functional or objective function by writing the power input to the body (which is

zero for the quasi-static problem) as

Pinp,t -- fs Siizi dS + fv Pbiiq dV , (3.1)

where S denotes the surface and V is the volume of the body in the deformed configura-
tion. A discussion of the power input to the body can be found in Malvern [25].

Using Equation 2.18, the surface integral in Equation 3.1 can be transformed into

Pinput- f [ui(Tji,j + pbi) + Tijui,j] dV . (3.2)
dv
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A functional II is now defined by equating Equations 3.1 and :3.2 as

If the equilibrium Equations 2.16 are substituted for Tji.i in Equation 3.3, the second
term is integrated by parts, and the first variation is taken, the result is

JV JS T

The Euler equations are the traction boundary conditions (Equations 2.18) and the state-
ment of equilibrium (Equations 2.16). If, in Equation 3.4, the term involving Tji.i is
integrated by parts, the following first variation is obtained:

6H=/v_it,(-pbi)dV+/v6i_i,jTijdV - _ _itisi dS =O . (3.5)T

The minimum of the functional at a specified time will be found using the nonlinear

conjugate gradient procedure. Equation 3.5 is used to determine the gradient of the
objective function (i.e., the residual forces in the body) at each iteration, and the finite
element method is used to discretize the body. Since 66i represents an arbitrary virtual

velocity field, Equation 3.5 is rewritten (with the use of the traction boundary condition
Equation 2.18) as a summation of the contributions of force from each finite element to
obtain

e •

The summation symbol represents the assembly of element force vectors into a global
nodal force array. It is assumed that the reader understands the details of this assembly.
In general, while iterating towards a solution within a load step, the value of the residual
vector R in Equation 3.6 will not be zero. In fact, convergence is defined by a measure
of how close R is to zero.

3.3 Conjugate Gradient Algorithm

For a quasi-static time step, a trial solution of components of the velocity vector is
substituted into the set of nonlinear Equations 3.6 and the residual vector (the gradient

of the functional H) is obtained:

R(_)= 61-1(/L). (3.7)

Intheindirectiterativesolutionprocedure,a setofvelocitycomponentsissoughtthat

willmake theresidualvectorzeroor acceptablysmall.The conjugategradientmethod

isusedtoefficientlyobtaindirectionsinwhichtosearchforthevelocitysolution.Using
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a form of the conjugate gradient method obtained by combining a linear preconditioned
version [l l] and a nonlinear version [16], the iterative process is started by assuming a
vector of velocity components at the nodes of the finite element mesh, fij, with j denoting
the iteration number. The residual vector, the gradient of the functional, becomes

nj = n(iLj) . (3.8)

A preconditioning matrix M (the diagonal of the linear stiffness matrix) is introduced to
define a generalized gradient vector Z as follows:

M,,Z= Rj . (3.9)
The conditioning is helpful when the body contains materials of differing stiffness or

elements of widely varying sizes.

If j = 0, the initial search direction is the negative of the gradient, the steepest
descent direction P0:

P0 = -Z0 = -M_'IRo . (3.10)

Subsequently, for j > 0, search directions that are conjugate to the previous direction
are chosen as follows:

Pj = -Zj + /3jPj_I , (3.11)

where _j has the value

_j = ZTM,_(Zj - Zj__ ) (3.12)

Equation 3.12 is a generalization of a method known as the Polak-Ribi_re algorithm, as
discussed by Powell [14]. The variables _ are then updated by searching for the least

value of H(/_) from _ along the direction Pj. Therefore

/Lj+I = _j + c_jPj, (3.13)

where cU is the value that minimizes the function of one variable. (The process of finding
c_j is known also as a line search.) Therefore,

R(oj) = (5II(/tj + ajPj) . (3.14)

If the residual R is not acceptably small after calculating Equation 3.13, another iteration
is begun. Efficient use of the conjugate gradient method greatly depends upon the cost
of the line search (calculating c_).

3.4 Gradient Calculations

The cost of solving problems with the conjugate gradient method is dominated by the

cost of gradient calculations. There are two places in the conjugate gradient procedure
where gradient calculations are needed. The first occurs in computing Equation 3.8,
the residual force vector, for each iteration. The second set of gradient calculations is
required when performing the line search represented by Equation 3.14.
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3.4.1 Residual Force

The calculation of ttle residual force vector or gradient of the objective function,
Equation 3.6, is accomplished by calculating contributions of force from several sources.
Forces are caused by the state of internal stress, artificial forces to stabilize singular

modes of elements (hourglass modes), external applied tractions, internal body forces,
and externally applied point loads. The specific method of calculating these forces is
described in Chapter 4.

3.4.2 Line Search
i

It is necessary to find a value of aj that will mininlize Equation 3.14. Equation 3.14 is
nonlinear in aj, and it is often solved iteratively for aj using Newton's method. However,
if the problem is highly nonlinear, Newton's method can take many iterations. This
requires many residual calculations which will dominate the cost of an analysis. Following
Bartels and Daniel [16], the minimization solution can effectively be approximated by

one step of Newton's method starting with aj = 0. The Newton process will result in
the following expression for aj:

ZI"M.Z,
URn,. (a.15)

The term Rp, represents a residual calculation with the Pj vector substituted for the
velocity vector. The material constitutive model is required to supply a secant modulus

array for use in calculating Rpj. If the material model cannot supply a secant modulus,
then it is approximated using the elastic moduli of the material. The use of the secant
modulus and a single step of Newton's method to perform the line search has proven to be
very economical when the material responds according to the elastic/plastic constitutive
law. If the problem is linear, both geometrically and in material response, then a single

step of Newton's method performs an exact line search for aj.

3.5 Restarting the Algorithm

The algorithm described in Section 3.3 draws its strength from finding new search
directions that are orthogonal (or conjugate) to those already taken. In some highly
nonlinear problems, however, this can become a drawback.

The problem comes when the nonlinear functional 61I, which depends on u as well as
on _, has changed enough from u0 to uk, or when roundoff error or other approximations
have accumulated to the point that the solution that minimizes Equation 3.8 may have
substantial components in directions that have already been searched. This becomes
apparent when no further reduction in the size of the residual is obtained even after a

great many iterations, or when the residuals begin growing very large ("blowing up"). In
such cases one must start the algorithm over again using a new (perhaps closer) initial
guess.

26



In such cases, the program can pick a new initial guess "on the fly," selecting as its

new guess the vector iLjmi,which has produced the smallest residual R:imi. so far in the
current load step. Three parameters governing this strategy may be adjusted using the
following input record:

CGRESET LIMITS

itstrt, itrset, tolfac

First, the new guess t_j_° must differ enough from the original guess t_0 that it will
produce better results. The first parameter, itstrt, specifies how many iterations to wait

before looking for a minimum residual (i.e., it is required that jmi, > itstrt). The default
value is 1% of the number of degrees of freedom: for a 1000-node problem, itstrt would
default to 20.

The next problem is to decide when to give up on the current CG iteration series
and try a new guess. Currently two situations are targeted: (1) many iterations with

no further reduction in residual size, and (2) a large increase in residual size, indicating
divergence. The second CGRESET LIMITS parameter, itrset, specifies the number of
iterations to allow between finding a minimum and restarting the CG algorithm. The
default value of itrset is half the number of degrees of freedom. The third parameter,
tolfac, defines how much growth in the residual norm indicates divergence. Its default is
1000, meaning that if the norm of the residual grows three orders of magnitude from its
minimum value so far, the algorithm is restarted. Both these defaults are intentionally
loose so that the restart logic will provide a safety net without interfering with a properly-
functioning CG solution.

In the extreme, setting itstrt to 0 and itrset to 1 results in restarting the CG algorithm
at every iteration. This reduces the iteration scheme to the steepest descent method,
always moving the solution in the direction of the current residual. Convergence of
the steepest descent method is often much slower than that of the conjugate gradient
method. The CG algorithm needs a long "leash" to function properly; if the ¢GRESET

LIMITS are set too tightly, the convergence rate will suffer accordingly, approaching that
of the steepest descent method. For a problem that is not converging very well, watching
the progress of the iterations with ITERATION PRINT turned on should indicate what
CGRESET LIMITS may be most helpful. Reducing the size of the load step and/or
adjusting the TRIAL VELOCITY FACTOR may be beneficial as well.

3.6 Convergence

Global convergence at the end of a time step is defined as having taken place when
any of the following inequalities is satisfied:

IIn ll< TOLR, (3.16)IIF,,ll-
IIRjll< RFSXDF, (3.17)
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or

II Jll- Ii J- II
< TOLU . (3.18)

II Jll
I1" [I denotes the L2 norm of a vector. In Equation 3.16, F,_ is a vector containing the
applied tractions, body forces (gravity forces), tlmrmal forces, and the reactions at nodes
where nonzero displacement boundary conditions are applied. Equation 3.17 provides a
convergence check for situations where the applied loads are small or nonexistent (i.e.,
when unloading to a zero load). Equation 3.18 is used to measure the change in the
velocity vector due to one conjugate gradient iteration. Its main purpose is to stop the
solution attempt if little progress is being made towards a solution. The velocity conver-
gence criterion should not be relied upon as a statement that the problem is at a state
close to equilibrium. However, Equations 3.16 and 3.17 are good measures @' ,low close
the problem is to a state of equilibrium. The program will terminate iterations for the
load step if any of these conditions is satisfied. The default tolerances for Equations 3.16
and 3.18 are 1.0 × 10-3 and 1.0 x 10-12, respectively, whereas RESIDF in Equation 3.17
defaults to zero.

If none of the above conditions is satisfied within the user-supplied MAXIMUM IT-

ERATIONS, the program will first go back to the iterate ujmi, that produced the smallest
residual during the load step iterations. If the relative size of the corresponding residual

Rjmi. is less than the user-specified MAXIMUM TOLERANCE, then/_J=i, is accepted and
the program will proceed to the next load step. If not, _j=_, is written to the plot file and
the analysis is terminated. The default value for MAXIMUM ITERATIONS is the number
of degrees of freedom, while MAXIMUMTOLERANCE defaults to zero.
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4. Finite Element Calculations

To define an isoparametric finite element, the spatial coordinates xi are related to
the nodal coordinates xiz through the isoparametric shape functions Ct as follows:

xi -- xilCz(_, r/, ¢) . (4.1)

In accordance with indicial notation convention, repeated subscripts imply summation
over the range of that subscript. The lowercase subscripts have a range of 2, corresponding
to the spatial coordinate directions. Uppercase subscripts have a range corresponding to
the number of element nodes.

The same shape functions are used to define the element displacement field in terms
of the nodal displacements Uil:

u_ = u_i¢1 • (4.2)

Since the same shape functions apply to both spatial coordinates and displacements, their

material derivative (represented by a superposed dot) must vanish. Hence, the velocity
field may be given by

ui = uizCt • (4.3)

The velocity gradient tensor L is defined in terms of nodal velocities as

Lij = ui,j = _i1¢i,j • (4.4)

By convention, a comma preceding a lowercase subscript denotes differentiation with

respect to the spatial coordinates (e.g.,/Li,j denotes Oizi/Oxj).

4.1 Four-Node Uniform Strain Element

The element library in J AC2D currently contains only a single continuum element,

the four-node isoparametric element, which is widely used in computational mechanics.
Determining optimal integration schemes for this element, however, presents a difficult
dilemma. A one-point integration of the element under-integrates the element, result-
ing in a rank deficiency that manifests itself in spurious zero-energy modes, commonly
referred to as hourglass modes. A two-by-two integration of the element over-integrates
the element and can lead to serious problems of element locking in fully-plastic and
incompressible problems. The four-point integration also carries a significant computa-

tional cost penalty compared to the one-point rule. In JAC2D, a one-point integration
of the element is used and implemented with an hourglass control scheme to eliminate

the spurious modes. The development presented below follows directly from Flanagan
and Belytschko [26].
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The two-dimensional isoparametric shape functions map the unit square in _;-space
[(_ is written explicitly as ((,r/)] to a general quadrilateral in x_-space, as shown in
Figure 4.1. The unit square is centered at the origin in (i-space so that the shape
functions may be conveniently expanded in terms of an orthogonal set of base vectors,
given in Table 4.1, as follows:

1 1 1

¢I = _Zx + _A,I + _r/h21 + _r/Fl . (4.5)

Note that the notation follows that used by Flanagan and Belytschko. In their work, the
1 1

_i range from -_ to ] .

Table 4.1. Orthogonal Set of Base Vectors

Node _ r/ El All A2I ['I
1 -.5 -.5 1 -1 -1 1
2 .5 -.5 1 1 -1 -1
3 .5 .5 1 1 1 1
4 -.5 .5 1 -1 1 -1

The above vectors represent the displacement modes of a unit square. The first vec-
tor, ]EI, accounts for rigid body translation. _ is called the summation vector because it
may be employed in indicial notation to represent the algebraic sum of vector components.

1

3
I-,.x 4 1 2

!i t" [; "t,,t'.J [. J , / • ,
_]r A,x A_ F_

[

Figure 4.1. Mode Shapes for the Four-Node Constant Strain Quadrilateral Element.
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The linear base vectors denoted by Ail may be readily combined to define the uniform
normal strains and shear strain in the element. The Air are referred to as the volumetric

base vectors because they are the only base vectors which appear in the element area
expression, as illustrated below.

The last vector, denoted by ['1, gives rise to linear strain modes that are neglected
in the single-point integration. This vector defines the hourglass patterns for a unit
square. Hence, ['I is referred to as the hourglass base vector. The displacement modes
represented by the vectors in Table 4.1 are also shown in Figure 4.1.

4.1.1 Plane Strain Case

Under plane strain assumptions, the thickness of the body is considered uniform

and arbitrary, and therefore can be eliminated from consideration. Equation 3.6 then
becomes

R= Z [L T,j_bi,i.jdA- L pbi$iqdA- fs Tonj$i_idl ] . (4.6)e • e

The first integral in this equation is used to define the element internal force vector fit
as

P

• 6_Zilfit .= I Tij6iti'J dA . (4.7)
JA

The second and third integrals define the external force vector.

One-point integration is performed by neglecting the nonlinear portion of the element
velocity field, thereby considering a state of uniform strain and stress. The preceding
expression is approximated by

fil = Tij f ¢I,j dA , (4.8)
JA

where the arbitrary virtual velocities are eliminated, and Tij represents the assumed.

uniform stress field, which will be referred to as the mean stress tensor. Neglecting the
nonlinear velocities results in the mean stresses depending only on the mean strains.
Mean kinematic quantities are defined by integrating over the element as follows:

ui,j = _ i_i,jdA . (4.9)

The discrete gradient operator is defined as

f Ct,i dA . (4.10)B_I
,I A

The mean velocity gradient, applying Equation 4.4, is given by

ui,j = izi1Bjt . (4.11)
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Combining Equations 4.8 and 4.10, the nodal forces are expressed by

f,z- TqBjl • (4.12)

Computing nodal forces with this integration scheme requires evaluation of the gra-
dient operator and the element volume. These two tasks are linked, as

z_,j= 6_j, (4.13)

where 6/j is the Kroneker delta. Equations 4.1, 4.10, and 4.13 yield

"-- f (XiI¢I), j dA = A6ij • (4.14)xilBjl
JA e.

Consequently, the gradient operator may be expressed by

OA
Bil "- Oxi'--'_" (4.15)

To integrate the element volume in closed form, the Jacobian of the isoparametric
transformation is used to transform the integral in xy-space to an integral over the unit
square:

A= dm = g d_?d_ , (4.16)

where

d = Ox Oy Ox Oy . (4.17)
o_ o,7 o77o_

Therefore, Equation 4.16 can be written as

A = xlyaCij, (4.18)

where

½ ½_¢i0¢j 0¢I0¢jC_j = O_ 0,1 077O_ "
(4.19)

Observe that the coefficient array CIj is identical for all quadrilaterals. Further-
more, in light of Equation 4.5, the above integration involves at most bilinear functions.
Therefore, only the constant term does not vanish, and the integration yields

1

CIj = _ (AIlA2j - i21ilj) • (4.20)

Note that CIj is antisymmetric:

C1J "-- --CJI . (4.21)
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Evaluating Equation 4.20 yields the following explicit representation for CIj:

0 1 0 -1
1 -1 0 1 0

Ctj = _ 0 -1 0 1 " (4.22)
1 0 -1 0

Substituting the above result into Equation 4.18, the familiar expression for the area
of a quadrilateral is obtained:

1

A = _ [(_ - Xl)(y, - y_) + (x_ - x4)(Y_ - Yl)] • (4.23)

Using this result in Equation 4.15, the B-matrix may be expressed as

-_: -g (x_ _) (_-_)(_-_)(_ _,) "

The mean stress approach gives the same results in two dimensions as the one-point
quadrature rule for the quadrilateral, since the Jacobian is at most bilinear.

Hourglass Control Algorithm

The mean stress-strain formulation of the uniform strain element considers only a

fully linear velocity field. The remaining portion of the nodal velocity field is the so-called
hourglass field. Excitation of these modes may lead to severe, unresisted mesh distortion.
The hourglass control algorithm described here is taken directly from Flanagan and
Belytschko [26]. The method isolates the hourglass modes so that they may be treated
independently of the rigid body and uniform strain modes.

A fully linear velocity field for the quadrilateral can be described by

_r_=_,_+_,j(_j_ _) . (4.25)

The mean coordinates xi correspond to the center of the element and are defined as

1

Yci= -_xi1E1 • (4.26)

The mean translational velocity is similarly defined by

= liqlF_1 . (4.27)

The linear portion of the nodal velocity field may be expressed by specializing Equa-
tion 4.25 to the nodes as follows:

•un ui21 + _i,j(xjl- 5:jEI) (4.28)Uil -_-
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where EI is used to maintain consistent index notation and indicates that ui and 2j
are independent of position within the element• From Equations 4.11 and 4.28 and the
orthogonality of the base vectors, it follows that

.lin
uiIEt = uii El = 4_i (4.29)

and

uii Bjl = A_i,j . (4.30)

The hourglass field .hguii may now be defined by removing the linear portion of the nodal
velocity field:

• .n. (431)uh_ -- UiI -- UiI •

Equations 4.29 through 4.31 prove that El and Bjl are orthogonal to the hourglass field:

_h_E, = 0 (4.32)

and
• hg
uiI Bjl = 0 . (4.33)

Furthermore, the B-matrix is a linear combination of the volumetric base vectors Ail, so
Equation 4.33 can be written as

• hg
Uil Ail= 0 . (4.34)

Equations 4.32 and 4.34 show that the hourglass field is orthogonal to all the base vectors
in Table 4.1 except the hourglass base vector. Therefore, .hg is proportional to theUiI

hourglass base vector as follows:

1" F .
i_h_= "_qi , (4.35)

The hourglass nodal velocity is represented by qi above (the leading constant is added to
normalize Fi). The hourglass shape vector 71 is defined such that

1.
qi = "_ui171 • (4.36)

By substituting Equations 4.28, 4.31, and 4.36 into 4.35, multiplying by FI, and using
the orthogonality of the base vectors, the following is obtained:

uilFI - uiSxjlPI = iQl"YI . (4.37)

With the definition of the mean velocity gradient, Equation 4.11, the nodal velocities
above are eliminated. As a result, 7I is computed from the following expression:

1

71 -- PI -- -"_BilxijFj • (4.38)

The above expression is simple enough to be written explicitly as follows:

1 x3(yl - Y4) + x4(y3 - Yl) + xl(Y4 - Y3) (4.39)
_'I -- 4"A x4(Yl - Y2) + xl(Y2 - Y4) ']- x2(Y4 - Yl) "
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The difference between the hourglass base vector rz and the hourglass shape vector

"YIis very important. They are identical if and only if the quadrilateral is a rectangle.
For a general shape, Fl is orthogonal to BjI, while _/l is orthogonal to the linear velocity
field "Un While rt defines the hourglass pattern, "YIis necessary to accurately detectUil •

hourglassing.

4.1.2 Axisymmetric Case

As with the plane strain quadrilateral, the uniform strain scheme for the axisymmet-

ric quad hinges on integration of the element volume. In what follows, the rz-coordinates
represent a cylindrical system as opposed to the xy plane system. Under axisymmetric
assumptions, the thickness of the body varies directly with distance from the axis of
symmetry. Considering a unit-radian wedge, Equation 3.6 becomes

e e e e

Using single-point integration, the first integral approximates the element internal force
vector by

P

= Tij/. ¢#,jr dA, (4.41)f.
JA

where the arbitrary virtual velocities have been eliminated, and Tij is again the mean
stress tensor. Neglecting the nonlinear velocities results in the mean stresses depending
only on the mean strains. Mean kinematic quantities are defined by integrating over the
element as follows:

ui,j = V iq,jr dA = izis Ct,jr dA (4.42)
e e.

and

u_ 1 L-- = -_it,s ¢I dA . (4.43)
r e

In this case, the discrete gradient operator is defined as

Bit = i Ct,ir dA , (4.44)
JA

and a centroid operator Hit is defined as

= f ¢ldA . (4.45)HiI
JA

Using this definition of the discrete gradient operator, the nodal forces and mean
velocity gradient may be written as they are in the planar case:

f_1 = T_jBjl (4.46)
1

ttij = "_hil Bj l . (4.47)
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In addition,

firr= vfirtH! . (4.48)

The above strain rates satisfy the important identity
i

2.

I)' = fi,.i + u--L, (4.49)

so that the correct volume change is obtained when the uniform velocity gradient com-

ponents are used.

The element volume may be calculated by

V = f_ r dA = rtrjzKCIjK , (4.50)

where

f+½ f;½ (OoCsOCg OCjOCg_drld( . (4.51)½

The shape functions in Table 4.1 apply to the axisymmetric case as well as the planar
case. Equation 4.51 is then evaluated to yield

1

CIjK = 1-"_EI(A1jA2s"- A2jA1K)

+  AI (A1jFK- rjhlg) (4.52)

"1

+ 4-_A2t(FjA_K - A2jFK) •

By taking the material derivative of Equation 4.50 and combining it with Equations 4.47
through 4.49, the following expressions are obtained for computing the gradient and
centroid operators"

Bil = -rj rKCgIj (4.53)

H/ = rjz_'CtjK • (4.54)

The following two identities, which are crucial to the development of the hourglass control
algorithm that follows, are extracted from Equations 4.53, 4.54, and 4.51.

BitEI = 0 (4.55)

HtE_ = A . (4.56)

36



Hourglass Control Algorithm

The linear velocity field for the axisymmetric element can be expressed with the
following sequence of equations, analogous to Equations 4.25 through 4.28:

_ = AraH1 (4.58)

.R

ui = i_ilH1 (4.59)

i_]_ = _,EI + _,,j(rjz- bEz) • (4.60)

By applying Equations 4.55 and 4.56, it can be shown that

iqlH1 = i_ni_H1= A_ (4.61)

iqlBjl = iff_Bjl = V_i,j, (4.62)

which verify that the uniform strain operators correctly integrate a linear velocity field.
Furthermore,

•un (4.63)UiI _[I --" 0 ,

where

1 (4.64)"71= Pl - _BariaFa ,

which shows that the hourglass operator is orthogonal to the linear field, as required.

4.1.3 Determination of Effective Shear Modulus for Hourglass Control

For the purpose of controlling the hourglass modes, a generalized force Oi is defined
conjugate to qi, so that the rate of work is

1

izilf h* = -_Q,4, (4.65)

for arbitrary ua. Using Equation 4.36, it follows that the contribution of the hourglass
resistance to the nodal forces is given by

1

fhg _. _Q¢'/I • (4.66)

The nodal antihourglass force has the shape of 7t rather than FI. This fact is essential,

because the antihourglass force should be orthogonal to the linear velocity field to prevent
energy from being transferred to or from the rigid body and uniform strain modes by the
antihourglassing scheme.

In JAC2D, an artificial stiffness resistance is used. In terms of the user-specifiable
parameter x, the resistance is given by

Q, = _---2ftBj'Bil ili (4.67)60 A "
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The stiffness expression must be integrated, which requires that this resistance be stored
in a global array. The term/_ is an effective shear modulus. JAC2D uses tile follow-
ing algorithm, similar to that found in PRONTO2D [6], for adaptively determining an
effective shear modulus of the material.

The constitutive response over a time step can be cast as a hypoelastic relationship
and approximated as isotropic. This defines an effective shear modulus/_ in terms of the
hypoelastic deviatoric stress and strain increments as follows:

sij = 2/_eijAt , (4.68)

where
1

sij = Aai_--_Aaak,5_j (4.69)

and
r 1

ei_ = dij - -_dkk,Sij • (4.70)

Taking the inner product of Equation 4.68 with the deviatoric strain rate and solving for
the effective shear modulus 2/_ gives

2_ = 8ijeiJ
e,,,ne,_,,At " (4.71)

If the strain increments are insignificant, Equation 4.71 will not yield numerically mean-
ingful results. In this circumstance, JAC2D sets the effective shear modulus to an initial
estimate,/_0. The effective modulus is not allowed to be greater than #0 or less than
Po × 10-2.

4.2 Finite Rotation Algorithm

As stated in Section 2.2, one of the fundamental numerical challenges in the devel-
opment of an accurate algorithm for finite rotations was the determination of R, the

rotation tensor defined by the polar decomposition of the deformation gradient F. An
incremental algorithm is used for reasons of computational efficiency and numerical accu-
racy. This algorithm is identical to that used in PRONTO2D by Taylor and Flanagan [6].
The validity of the unrotated reference frame is based on the orthogonal transformation

given by Equation 2.14. Therefore, the crux of integrating Equation 2.6 for R is to main-
tain the orthogonality of R. If one integrates tt = I1R via a forward difference scheme,
the orthogonality of tt degenerates rapidly no matter how fine the time increments. The

algorithm of Hughes and Winget [27] is adopted for integrating incremental rotations as
follows.

A rigid body rotation over a time increment At may be represented by

xt+at= Qa,x, , (4.72)
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where Qat is a proper orthogonal tensor with the same rate of rotation as R, given by
Equation 2.6. The total rotation R is updated via the highly accurate expression below:

R,+_, = Q,_tR, . (4.73)

For a constant rate of rotation, the midpoint velocity and the midpoint coordinates

are related by

(x,+a, - x,) = 7fl(x,+a, 4- x,) . (4.74)

Combining Equations 4.72 and 4.74 yields

At

(q,,,-I)x,= -Ta(Q,,,+I)x,. (4.75)

Since x, is arbitrary in Equation 4.75, it may be eliminated. Solving for QA,,

The accuracy of this integration scheme depends upon the accuracy of the midpoint
relationship of Equation 4.74. The rate of rotation must not vary significantly over the
time increment. Furthermore, Hughes and Winget [27] showed that the conditioning of
Equation 4.76 degenerates as NAt grows.

The complete numerical algorithm for a single time step is shown in Table 4.2. This
algorithm requires that the tensors Y and R be stored in memory for each element.

Table 4.2. Finite Rotation Algorithm

1. Calculate D and W

2. Compute zi = e_jkV_,_Dmk
w = w - 2[V - I tr V]-lz

--- _ei.ikWk
At3. Solve (I- _a)R,+_, =(I + va)R,

4. Calculate V = (D + W)V - Vfl
5. Update Vt+a, -- V, 4- AtV
6. Compute d = RTDR

7. Integrate _ = f(d,a)
8. Compute T = Ra'R T
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5. Constitutive Models

The J AC2D program is written in modular form so that different material models
can be added in the future. At the present time there are seven continuum material
models, although the isothermal elastic/plastic model is the only continuum model de-
scribed here. Since each model is in some sense an independent module, each may be
separately documented. Verification problems similar to those given in Chapter 8 should
be included in the documentation. The input instructions given in Appendix A contain
documentation references for the other models. Instructions for adding a new material
model are given in Appendix C.

The function f in Step 7 of Table 4.2 represents a stress-strain relationship. The
main assumption is that the strain rate is constant from time tn-1 to tn. During each
conjugate gradient iteration the latest values of the kinematic quantities are used to
update the stress. All material models are written in terms of the unrotated Cauchy
stress tr and the deformation rate d in the unrotated configuration.

When calculating linear elastic material response, Hooke's law is used. In a rate
form, this is written as

b = A(trd)$+ 2#d, (5.1)

where A and # aretheelasticLamd materialconstants.

5.1 Elastic/Plastic Material with Combined Hardening

The elastic/plastic model is based on a standard yon Mises-type yield condition
and uses combined kinematic and isotropic hardening. It behaves elastically if no yield
stress is input. A very thorough description of this model is found in the PRONTO2D
manual [6]. The description is repeated here for completeness.

5.1.1 Basic Definitions and Assumptions

Some definitions and assumptions are outlined here. In Figure 5.1, which geomet-
rically depicts the yield surface in deviatoric stress space, the backstress (the center of
the yield surface) is defined by the tensor a. If tr is the current value of the stress, the
deviatoric part of the current stress is

1
S = a - _ tr tt6 . (5.2)

The stress difference is then measured by subtracting the backstress from the deviatoric
stress by

. (5.3)
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Figure 5.1. Yield Surface in Deviatoric Stress Space.

The magnitude of the deviatoric stress difference R is defined by

R = I1_11= _V_-_.'_, (5.4)

where the inner product of second order tensors is S:S = S_jS_j. Note that if the
back._ tess is zero (isotropic hardening case) the stress difference is equal to the deviatoric
part of the current stress S.

The yon Mises yield surface is defined as

f(a) = ½_,"_.= _2, (5.5)

and the von Mises effective stress _ is defined by

= vf_'_ . (5.6)

Since R is the magnitude of the deviatoric stress tensor when a = 0, it follows that

= V_ = V/_-_a . (5.7)
R

The normal to the yield surface can be determined from Equation 5.5:

Q= Of/Oo" _.
IlOf/O_ll= R " (5.8)

42



It is assumed that the strain rate can be decomposed into elastic and plastic parts
by an additive decomposition,

d = d el -t- d pl , (5.9)

and that the plastic part of the strain rate is given by a normality condition,

d pl - -yQ, (5.10)

where the scalar multiplier 7 is to be determined.

A scalar measure of equivalent plastic strain rate is defined by

dpl
--" _/2dpl" d pl , (5.11)

which is chosen such that

_dvl = a:d pl . (5.12)

The stress rate is assumed to be purely due to the elastic part of the strain rate and
is expressed in terms of Hooke's law by

b = A(tr del)$ + 2/_del , (5.13)

where A and p are the Lam6 constants for the material.

In what follows, the theory of isotropic hardening, kinematic hardening, and com-

bined hardening is described.

5.1.2 Isotropic Hardening

In the isotropic hardening case, the backstress is zero and the stress difference is
equal to the deviatoric stress S. The consistency condition is written by taking the rate
of Equation 5.5:

](a) = 21ck . (5.14)

The consistency condition requires that the state of stress must remain on the yield
surface at all times. The chain rule and the definition of the normal to the yield surface
given by Equation 5.8 is used to obtain

!10,11
and from Equations 5.4 and 5.5,

ol
=IlSll=R. (5.16)

Combining Equations 5.14, 5.15, and 5.16,

1

_S" a = h . (5.17)
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Note that because S is deviatoric, S" d = S' S, and

s.g =_/(_s. _/

Then Equation 5.17 can be written as

R = _f_a = v_H'_" , (5.19)

where H' is the slope of the effective stress versus equivalent plastic strain (_ vs. @l).
This may be derived from uniaxial tension test data as shown in Figure 5.2.

The consistency condition (Equation 5.17) and Equation 5.19 result in

_-23H'd_=q. _. (5.20)

The trial elastic stress rate _tr is defined by

_tr = C:d, (5.21)

where C is the fourth-order tensor of elastic coefficients defined by Equation 5.13. Com-

bining the strain rate decomposition defined in Equation 5.9 with Equations 5.20 and 5.21
yields

_a2-H'_ l = Q"- Q" (5.22)
c. d pl"

EE e
#

E-E

Figure 5.2. Conversion of Data From a Uniaxial Tension Test to Equivalent Plastic
Strain Versus von Mises Stress.
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Since Q is deviatoric, C "Q = 2#Q and Q" C • Q = 2#. Then using the normality

condition (Equation 5.10), the definition of equivalent plastic strain (Equation 5.11), and
Equation 5.22,

_2H'7 - Q" btr _ 2#7 (5.23)3

and since Q is deviatoric (Q" _tr .._ 2#Q .d), 7 is determined from Equation 5.23 as

1

7 = (1 + 3_-_)Q' d . (5.24)

The current normal to the yield surface Q and the total strain rate d are known
quantities. Hence, from Equation 5.24, 7 can be determined and then used in Equa-
tion 5.10 to calculate the plastic part of the strain rate. With the additive strain rate
decomposition and the elastic stress rate of Equations 5.9 and 5.13, this completes the
definition of the rate equations.

The means of integrating the rate equations, subject to the constraint that the stress
must remain on the yield surface, still remains to be explained. How that is accomplished
will be shown in Section 5.1.5.

5.1.3 Kinematic Hardening

For kinematic hardening, the von Mises yield condition is written in terms of the
stress difference _:

f(_)_ }_._ = _2 . (5.25)

It is important to remember that both _ and the back stress a are deviatoric tensors.

The consistency condition for kinematic hardening is written as

j:(_) = O, (5.26)

because the size of the yield surface does not grow with kinematic hardening (k = 0).

Using the chain rule on Equation 5.26,

Of. _ = 0 (5.27)

and

0, i011N = N Q= RQ . (5.28)
Combining Equations 5.27 and 5.28 and assuming that R ¢- 0,

Q'_-0 (5.29)

or

Q: (S- &)= 0 . (5.30)
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A geometric interpretation of Equation 5.30 is shown in Figure 5.3 in which the backstress
moves in a direction parallel to the normal to the yield surface.

The back stress rate & must now be defined. For the isotropic hardening case

(Equation 5.20),

= V/__23H,dVl2 ,q. = _u _ . (5.31)

The kinematic hardening condition assumes that

ek= ¢d pl = ¢-),Q, (5.32)

where ¢ is a material parameter. If ¢ is chosen to be 2 '_H, Equations 5.32 and 5.30
give a result identical to the isotropic hardening case (Equation 5.31). Hence, either
Equation 5.31 or 5.32 gives us a scalar condition on &. Both of these are assumptions
and must be shown to be reasonable. Experience with material models based on these
assumptions has shown that, in fact, they are reasonable representations of material
behavior.

Using Equation 5.32, Equation 5.9 (the strain rate decomposition), and Equa-

tion 5.13 (the elastic stress rate) in Equation 5.30 (the consistency condition for kinematic
hardening) gives

q. (_.tr _ C' d pl) = q' 2 ,_HTQ . (5.33)

O:S

/
/
/

/
tZ o !

S

Figure 5.3. Geometric Interpretation of the Consistency Condition for Kinematic
Hardening.
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Using the normality condition (d pl- 7Q)and the fact that Q is deviatoric, C:Q = 2/,Q.
Solving Equation 5.33 for 7 then gives

1
Q:d, (5.34)H'

which is the same result as that of the isotropic hardening case.

5.1.4 Combined Isotropie and Kinematic Hardening

For the combined hardening case, a scalar parameter/_ is defined as ranging from
0 to 1, which determines the relative amount of each type of hardening. Figure 5.4
illustrates the uniaxial response to reversed loading that results from different choices

of ft. When fl = 0, only kinematic hardening occurs, and when /_ = 1, only isotropic
hardening occurs.

The results derived for the independent hardening cases are multipled by the ap-
propriate fraction for each type of hardening. Equations 5.19 and 5.32 are rewritten
a£

l_ 2 t-I= U dv/_ (5.35)

and

2 H,dpl(1 -/_) - = '& = _ 5H -/q(1 -/3) . (5.36)

(7

1

E E
1

1 1

(

0<<1

=1 1 E'

Figure 5.4. Effect of the Hardening Parameter/_ on Uniaxial Response.
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As before, the consistency condition is

Q._=R (5.37)

or

(_ 2 t-latp
Q.- &) = v_H /3 . (5.38)

Using the elastic stress rate, the additive strain rate decomposition, and the normality
condition, Q" g = Q' (btr_ 7C.Q) ' Together with Equations 5.36 and 5.11, this
transforms Equation 5.38 into

_.tr 7Q" C: Q 2 , . V/_Ht/_/2(TQ .q. - iH 7(1 -/3)Q Q - ) (TQ) . (5.39)

Solving for 7, 1

7 = (i + _uu)";Q' d, (5.40)

which is the same result as was obtained for each of the independent cases.

The following is a summary of the governing equations for the combined theory:

= C: (d - d p') = b tr - 2_7Q (5.41)

k = J3"I_-H'dp'=V'5J3_H'57 (5.42)

& = (1 -/3)_H'd pl (5.43)

0 (elastic), if f(_)< a2dPl = 7Q (plastic), if f(_) >__2 (5.44)
1

7 = (1 + 3_-_)Q'd (5.45)

OflO_
q = II_f/&rll= R (5.46)

5.1.5 Numerical Implementation
l

The finite element algorithm requires an incremental form of Equations 5.41 through
5.46. Additionally, an algorithm must be used that integrates the incremental equations
subject to the constraint that the stress remains on thc yield surface.

The incremental analogs of Equations 5.41 through 5.43 are

tr
an+l = an+l - 2#ATQ, (5.47)

2/SH'A7, (5.48)/_+, =/_+_
and

,_2H, A .-.a_,+l = a,_ + (1 - _j5 7_, (5.49)
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where A 7 represents the product of the time increment and the equivalent plastic strain
rate (A 7 = 7At). The subscripts n and n + 1 refer to the beginning and end of a time
step, respectively.

An incremental analog is needed for the rate forms of the consistency condition given
by Equations 5.14, 5.26, and ,5.38. At the end of the time step, the stress state must be
on the yield surface. Hence, the incremental consistency condition is

a,_+l + R_+IQ = S_+1 • (5.50)

Equation 5.50 is depicted in Figure 5.5.

Substituting the definitions given by Equations 5.47 through 5.49 into the consis-
tency condition of Equation 5.50,

[a,+ (I-/_)_H'ATQ] + [/_+ }/_H'AT]Q = S_+I- 2/zATQ • (5.51)

TakingthetensorproductofbothsidesofEquation5.51withQ and solvingforAT,

1 1

= 2. + II- (s.52)
It follows from Equation 5.52 that the plastic strain increment is proportional to the
magnitude of the excursion of the elastic trial stress past the yield surface (see Figure 5.6).

Rn+ 1 Qn+ 1

Sn+l

Figure 5.5. GeometricInterpretationoftheIncrementalForm oftheConsistency

ConditionforCombined Hardening.
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_ ii i u

Figure 5.6. Geometric Interpretation of the Radial Return Correction.

Using the result of Equation 5.52 in Equations 5.47 through 5.49 completes the
algorithm. In addition,

Ad pl = A'TQ (5.53)

and

. (5.54)Ac_pl=

Using Equation 5.52 in Equation 5.47 shows that the final stress is calculated by
returning the elastic trial stress radially to the yield surface at the end of the time step

(hence the name Radial Return Method). Estimates of the accuracy of this method
and other methods for similarly integrating the rate equations are available in Krieg
and Krieg [28] and Schreyer et al. [29]. The radial return correction (the last term in
Equation 5.47) is purely deviatoric.

5.1.6 Secant Modulus

A secant modulus is needed to make the conjugate gradient solution algorithm more
efficient. To derive the secant modulus, Equation 5.21 is written as

tr
a,,+l = a,, + C" dAt (5.55)
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for calculating the trial stress state with the elastic modulus C. Next, Equation 5.47 is
written as

0 'tr -- a $'tr (5,56)O'n+l "-- n+l %n+l

where

a = b 1 -- "tr tr
_/t[.+1 ' 1[,_+1

and
1
., .

b= (1 +_.)

By using the operator D defined by

+2/3 -1/3 -1/3 0
D= -1/3 +2/3 -1/3 0

-1/3 -1/3 +2/3 0 ' (5.59)
0 0 0 1

Equation 5.55 can be rewitten as

_t_r+l= _,, + D' C' dAt . (5.60)

Now Equations 5.55, 5.56, and 5.60 are combined to eliminate all trial values and obtain

a,,+l-a,,=(I-aD):C:dAt-a_,, . (5.61)

With the use of Equation 5.60, the expression tr tr -1]2(_n+l "_n+l) in Equation 5.57 is ap-
proximated with a two-term expansion as

(,_ t_ -,/2_.,_+1 ) -- _''lrl"+'l"'n+' (1 -- 't"_+a'C'dAt)2',tr+l "',_+1 ' (5.62)

Substituting Equation 5.62 into Equation 5.61 results in

a,_+_-a,_ = I- aD - tr 'C'dzXt-b 1- .,... t_,_• (5.63)
2(_n+l '_n+l tr

n+l "_n+l

Seeking a secant modulus C* such that

a,,+l - a,, = C* : dAt, (5.64)

we drop the last term in Equation 5.63 and approximate C* by replacing _+1 with tr_n+l:

bR,Ji,_+l ® tln+l

C" _ I- aD - 2llgtr,,,_+,ll3 . C . (5.65)
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6. Contact Surfaces

Many structures consist of two or more parts that are in contact and that slide with

respect to one another. In the setting of the CG method, a sliding algorithm can easily
be incorporated using the master-slave concept. When interference between two surfaces
is detected, the nodes on the slave surface are constrained to move on the master surface.
Friction can be used to constrain differential motion of the two surfaces in the direction

tangent to the master surface. The method is alsJ conveniently used to fix two surfaces
together. The master-slave concept is discussed by Stone et al. [30].

As mentioned above, the master-slave algorithm will keep nodes on the slave surface
from penetrating the master surface. Thus, if a slave node moves past the end of a master

surface, the desired constraint may not be present. This problem can usually be fixed by
reversing the master and slave surface designations. Also, in order to obtain the highest
degree of constraint, it is best to have the more coarsely-meshed surface be the master
surface.

6.1 Search Algorithm

The relationship between a slave node and its master surface is shown in Figure 6.1.

Slavenode
S

Y

Figure 6.1. Master-Slave Relationships for Sliding Interfaces.
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The slave node S has penetrated the master surface element face and is located at
perpendicular distance d from the master surface. A local coordinate system using all

isoparametric coordinate rI that ranges from -1 to 1 is used to parameterize the master
surface. In order to find the location point M on the master surface, a value of r/ for
the point M must be found such that the vector d is perpendicular to the master surface

segment. Letting subscripts 1 and 2 refer to the master surface nodes, the length of the
master surface is given by

IM= x/(_- _,)_+ (Y_- Y,)_• (6.1)

Then,

? = (z2 - x,)(2xs - x, - z2) + (Y2 - y,)(2ys - y, - Y2) (6.2)

Defining the interpolation functions

1-r I
¢1 = ----- (6.3)2

1+,7
¢2 - , (6.4)2

the penetration distance is easily calculated by

d = (y_- y,)(xs - ¢,_, - ¢_z_)- (_ - _,)(_s- ¢,y, - ¢_y_)
IM . (6.5)

On everyCG iteration,eachslavenode istestedforcontactwithitsmastersurface.

The searchisterminatedwhen a mastersurfacesegmentisfoundforwhich

- 1.01 < r/ < 1.01 (6.6)

and

Idl < stolr x lM , (6.7)

where the search tolerance stolr is a user-specified value which defaults to 0.1. Initially

the quantities 7/and d for a slave node are calculated in a vectorized loop for every element
face on the master surface. If the node was in contact with a particular element face on

the previous CG iteration, however, a sequential search beginning with that element face
is initiated instead.

Once the slave node is paired with an element face on the master surface, two
additional criteria are checked before contact is declared:

d < dtolr x IM (6.8)

and

Rs_ < flolr , (6.9)

where Rsn is the normal component of the residual force vector on the slave node. These

criteria correspond to the user-specified capture distance and tensile capacity, respec-
tively, of the contact surface.

54



6.2 Kinematic and Force Conditions

The kinematic and force conditions that apply to a contact surface are very similar
to those in a finite-element assembly process. The conditions are applied to both the

residual force vector Rj and tile conjugate gradient vector Pj.

6.2.1 Force Conditions

Fixed Interface

For a fixed interface, all components of the slave node residual force vector are

applied as point loads to the master face at the location 71.The result is a set of forces
that are distributed to the nodes associated with the master face by

RM_ = ¢_Rs_ , (6.10)

where the ¢_'s are interpolation flmctions on the master face. Then all the residual force

components at the slave node are set to zero. This action ensures that the total force
remains constant for the problem and that the norms associated with the CG method
are correctly calculated. If the slave node is directly in contact with a master node,

this process is exactly the same as a finite-element assembly process. In addition, all
slave nodes in contact with a master surface are subjected to linear constraint conditions

defined by their location on the master surface.

Sliding Interface

For a sliding interface, simple Coulomb friction conditions have been implemented
in the code. The same actions are applied as those in the case of a fixed interface with
respect to the force transfer from the slave node to the master surface. However, the
maximum amount of force transferred in the direction tangent to the master surface is
limited to the value of the friction coefficient times the normal slave force. The tangent
direction is calculated by projecting the velocity of the slave node onto the master surface.

6.2.2 Kinematic Conditions

To ensure that the slave node moves properly on the master surface, kinematic
conditions are applied to the solution process by modification of the slave node CG
vector Ps before the line search is undertaken. Because updates to the velocity vector of
the slave node are linearly dependent upon Ps, any modification to Ps will be reflected

in the velocity vector update after the CG line search is performed.

Initially, the P-vectors at the two master-surface nodes are interpolated to the loca-
tion of the slave node to define PM, the motion of point M on the master surface. PM is
then rotated to the (n,77) coordinate system. A ,5 for the slave node is then constructed
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as follows. For the normal component,

P,, = PM,_ 0.2d, (6.11)

where PM,, is the component of PM in the surface normal direction. The subtraction of

0.2d/aj will slowly push the slave node back to the master surface at every CG iteration.
In practice, a factor of 1.0 is used in place of a_ for the following reasons: (1) aj is not
known until after the line search is performed, (2) aj is usually close to 1.0 due to the
choice of the CG preconditioning matrix M, and (3) the factor 0.2 is somewhat arbitrary.

If a fixed interface is specified, then the transverse component of/5 is
A

P, = PM,, (6.12)

where PM, is the component of PM in the y-direction. Otherwise, for a sliding interface
the slave node retains its original transverse component:

^

P, = Ps, • (6.13)

After/5 is constructed, it is rotated back to the global coordinate system and substituted
for the original slave node CG vector.

6.3 Diagonal Assembly
,

For all of the sliding conditions, the preconditioning matrix (which is simply the
diagonal of the linear stiffness matrix) must be assembled correctly to account for the
fact that two surfaces are in contact. The diagonal term associated with tile slave node
is distributed to the master-face nodes using the interpolation functions ¢_:

MM_ = ¢,Ms • (6.14)

The distributed slave values are: then added to the diagonal values for the master nodes.
Again, as with the residual force assembly, this action ensures that the generalized CG

vector Zj is properly calculated.
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7. Loads and Boundary Conditions

J AC2D supports several types of loads and boundary conditions. Displacements,
pressures, concentrated forces, and body forces may be prescribed. This chapter describes
how these are implemented in the program.

7.1 Kinematic Boundary Conditions

All the kinematic boundary conditions described below are accomplished by altering

the residual vector during the CG iterative process at the nodal points. All kinematic
boundary conditions are applied to nodal point sets.

7.1.1 Zero-Displacement Constraints

A zero-displacement constraint is enforced by setting the appropriate component
of residual force at each selected node to zero during the CG iterative process. This
will kinematically constrain the problem because the update to the velocity vector using

Equations 3.11 and 3.13 is linearly dependent upon Rj. The starting value for the appro-
priate displacement component must also be set to zero. Zero-displacement constraints
may be specified in either coordinate direction or normal to any line in the analysis plane.

7.1.2 Nonzero-Displacement Constraints

A nonzero-displacement constraint is specified by initializing the component of ve-

locity with the change in displacement needed to satisfy the specification. The starting
value for the appropriate displacement component must also be initialized to the value
specified for the end of the time step. Then setting the same component of the residual
force vector for all conjugate gradient iterations to zero will ensure that the initial values
will not change with each conjugate gradient iteration. This will result in .j+l .jtti -- tti.

Nonzero-displacement constraints may be specified in either coordinate direction.

7.1.3 General Skewed-Displacement Constraints

Prescribed displacements in an arbitrary direction are not explicitly programmed in
JAC2D. However, this type of constraint is easily imposed through the use of a sliding
interface. First, elements are defined that describe the surface on which the body will
slide. The surface nodes of these elements are then given displacement constraints to
reflect the desired rigid body motion required of the surface. The master element block
must be given material properties, even though it will behave as a rigid body. The surface
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of the body to be constrained is defined as the slave side of a sliding interface, while the

rigid surface is defined as its master side, as described in Chapter 6.

7.2 Traction Boundary Conditions and Distributed Loads

The boundary conditions described here apply external forces to selected nodes. The
pressure and shear traction boundary conditions are applied to element side sets, while
the nodal force boundary conditions are applied to nodal point sets. Element side sets
and nodal point sets are discussed in the EXODUS manual [19]. Body forces (distributed
loads) are applied to each node in proportion to the mass of the material that surrounds
it.

7.2.1 Pressure and Shear Tractions

The set of consistent nodal point forces arising from pressures distributed over an
element side are defined by the last integral in Equation 3.6 by

6itilfil = 6itil fs d_t(-pni) dA , (7.1)

where the range of the lowercase subscripts (coordinate directions) is 2, and the range of
uppercase subscripts (surface nodes) is 2. Since the virtual velocities are arbitrary, they
may be eliminated to yield

fit = -/s dpllmi dA . (7.2)

The most general pressure distribution allowed is a mapping from nodal point pres-
sure values via the isoparametric shape functions. The resulting expression for the con-
sistent nodal forces is

fit = -pJ .!¢ dt_jni dA . (7.3)

For the surface of the four-node uniform stress element used in JAC2D, dt is given by

_t ' ' <_< ' (7.4)=_El+_ht, -__ __,

where

and nini - 1. Figure 7.1 shows geometric definitions of a pressure loading.

It follows that

zi=x. , (7.6)

and, in the case of planar geometry,

Oxi

ni dA = eli3---_ d_ = eij 3 xjKA K d( . (7.7)
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Pl

Figure 7.1. Definition of a Pressure Boundary Condition Along an Element Side.

Then, the consistent nodal forces can be written as
1

F!fil = --pjeij3xjKAK ¢I¢.]d_ • (7.8)
2

i

Combining Equations 7.4, 7.5, and 7.8,

f,, = -pa e,_3x_Ag [¼r_tr_a + _AtAj] . (7.9)

This expression is evaluated as

fit = 6Ni 1 2 P2 '

where

Ni'--eij3xjtiAK={Yl-Y2} "x2 - Xl (7.11)

In the present implementation, only a uniform pressure may be specified along each
element face (i.e., pl = p_ = p). With this simplification, Equation 7.10 reduces to

= _pNi . (7.12)

A positive pressure directs forces inward, and produces a negative normal stress in the
element.

In the axisymmetric case, the surface area of an element face is proportional to its
distance from the axis of symmetry. A derivation similar to the one above yields the
following result:

fi 1 { 2rl+r2 } (7.13)= -gpNi 2r2 + rl "
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An analogous derivation may be used for the application of distributed shear trac-
tions to an element face. If the magnitude of the traction per unit area is p, then the
nodal forces resulting from the traction are again given by Equations 7.12 and 7.13, with
Equation 7.11 replaced by

N' = { x'_ -- xl } "y2- yl (7.14)

A positive shear traction applies a counterclockwise force, and produces a negative shear
stress in the element.

The nodal values for the pressure and shear traction are calculated using the user-
supplied scale factor and time history function, or for maximum generality, may be
calculated in a user-supplied subroutine. To allow for a geometrically-nonlinear response,
the values are recalculated at every CG iteration.

7.2.2 Nodal Forces

External nodal point forces are simply applied by calculating the magnitude of the
force determined by the user-supplied scale factor and a time history function. The time
history function is evaluated at the beginning of the load step.

7.2.3 Gravity or Body Forces

Gravity or body forces are computed with the evaluation of the second integral in
Equation 3.6. This is done as follows:

v Pbi66i dV = pbi1V_1j66i.t (7.15)

where V_ is the element volume, and _IJ is the Kroneker delta.

Body forces are input by the use of a specified time history function for each com-
ponent. For example, a gravity load or body force in the y-direction would only use the
Y GRAVITY FUNCTION option. General body forces that vary with position and time
may be input from a file using the DISTRIBUTED LOADS option.
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8. Verification and Sample Problems

Sample problems are included for code verification and to acquaint the user with the
J AC2D program. The first section gives problems intended to verify the general coding
of JAC2D. The second section presents verification studies specific to the isothermal
elastic/plastic material model.

8.1 Elastic Problems for Verification of Continuum Elements

Several elastic verification problems are presented. These include the large-displace-
ment analysis of a thin beam, the rotation of a unit cube, and the pressurization of the
internal surface of a sphere.

8.1.1 Cantilever Beam

The large deformation of an elastic cantilever beam is included for comparison with
the analytical solution as formulated by Holden [32]. The beam problem is challenging
for these elements used in conjunction with the CG method. The beam has a length-to-
thickness ratio of 30 and, to simulate plane stress conditions, Poisson's ratio is set equal
to zero. Gravity and normal pressure loading conditions are presented.

First, the beam is loaded with gravity, which keeps the direction of load constant
throughout the analysis. Following the notation and development of Holden, the equation
for the slope of the beam is

d20
d,--_ = -k$ cos 0, (8.1)

where 0 is the angle between the beam neutral axis and the x-axis; ,_ = alL is the
normalized arc length along the beam neutral axis; k = wL3/EI is a nondimensional
loading parameter; L is the length of the beam; w is the loading intensity (load per unit

length); E is Young's modulus; and I is the beam's moment of inertia. This equation
describes the finite deflection of uniform beams using the Euler-Bernoulli law of bending

subject to vertical (gravity) loading. Boundary conditions for a cantilever beam are

dO

d"_= 0 at _ = 0 (free end) (8.2)

0=0 at g=l (fixed end) . (8.3)

The normalized horizontal and vertical deflections of the free end of the beam are then

given by

h/L = cos 0 dg (8.4)

61



and

I'6/L = sin 0d_, (8.5)

respectively. Equation 8.1 is solved using a Runge-Kutta procedure, the integrations
for deflections are computed using adaptive quadrature, and the results are checked by
comparison to Holden's published solution.

The finite element model, shown in Figure 8.1, has thirty elements along its length
and four through the bending direction. The nonlinear response is calculated for the
gravity-loaded case and is compared to the beam-theory solution in Figure 8.2. The
comparison for this ease is very good. In Figure 8.1 the deformed shape of the mesh for
loads corresponding to k = 6.5 and k = 20 is shown in comparison to the undeformed
mesh.

Convergence of the solution for the beam problem is very slow. First, the spread of
eigenvalues in the problem is large, and any indirect iterative solution technique with a
diagional conditioning matix will have difficulty. If the problem is ill-conditioned in the
linear approximation, as in this ease, then adding the nonlinearity of large deformation
(i.e., taking into account the rotation of the beam) compounds the difficulty. To lower
the impact of the nonlinearities, the calculation is begun by first solving the initial load
step assuming linear geometry. Then, using the linear results as a starting vector, the
geometric-nonlinear effects are included and the first step is recalculated (TRIAL LINEAR).
The starting displacement increment for each of the following time steps is taken to be the

incremental displacement calculated in the previous step (TRIAL VELOCITY FUNCTION).
To further ensure a good starting displacement increment, very small load steps are taken
and a relatively tight convergence tolerance is specified. For the gravity-loaded case, a

total of 620 load increments is used (k = 0.0324 each), with a convergence tolerance of
0.01 on the residual force norm of Equation 3.16. The load steps take an average of 547
nonlinear iterations each. To get the correct bending response, the default value of the
HOURGLASS PARAMETER must be used.

The problem is also analyzed with pressure applied along the top of the beam so that
the load remained normal to the surface throughout the deformation. The beam-theory
equation for this case is

d20
d.----_ = -k_, (8.6)

with the same boundary conditions as before. For large load magnitudes, this configu-
ration causes more severe bending of the beam. The input file for the pressure-loaded
case is shown in Figure 8.3. Once again, the analytic solution is compared to the JAC2D
calculation in Figure 8.4, and the deformed shape of the beam at several load levels is
shown in Figure 8.5. In this case, the finite element model is much more stiff than Euler-

Bernoulli beam theory predicts at the higher loads. This is probably due to the fact that
when the beam starts bending back on itself, the radius of curvature is no longer large
compared to the thickness of the beam. JAC2D has a somewhat easier time with this
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Figure 8.1. Finite Element Model for Beam Problem.
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Figure 8.2. Comparison of Displacements for a Beam With Gravity Loading.
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TITLE

ELASTIC BEAM WITH PRESSURE LOADING

TRIAL LINEAR

MAXIMUM ITERATIONS, 3000

ITERATION PRINT, 10

RESIDUAL TOLERANCE, 0.01

MAXIMUM TOLERANCE, 0.1

CGRESETLIMITS, 400, 120

TRIAL VELOCITY FUNCTION, 2

SOLUTION FUNCTION, 3

OUTPUT FUNCTION, 2

PLOT FUNCTION, 4

FUNCTION I $ PRESSURE LOADING

0.0,0.0

2.O, 2.0
END

FUNCTION2 $ TRIAL VELOCITY

0.0,1.0

2.0,1.0
END

FUNCTION 3 $ SOLUTION

0.0, 620

1.55

END

FUNCTION 4 $ PLOT

0.0, 310

1.55

END

PRESSURE, 5, 1, 400.

X DISPLACEMENT, 1

Y DISPLACI_ENT, 1

MATERIAL, 1

ISOTHERMAL ELASTIC PLASTIC

YOUNGS MODULUS,IE+7
END

EXIT

Figure 8.3. Input for the Pressure-Loaded Beam Problem.
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Figure 8.4. End Displacement for a Beam With Uniform Pressure Loading.
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Figure 8.5. Deformed Shape of the Beam Under Pressure Loading.
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i

load configuration: it takes an average of only 285 nonlinear iterations per load step.

As a point of reference, the JAC2D solution with linear geometry assumptions (LINEAR
PROBLEM) is also plotted in Figure 8.4. This solution agrees with the linear beam theory
prediction of _/L = hi8.

8.1.2 Unit Square

A unit square as shown in Figure 8.6 is first loaded with uniaxial pressure and then

rotated about one corner. The input to the unit square problem is shown in Figure 8.7.
The INITIAL EQUILIBRIUM capability is exercised to obtain the uniaxial stress state

before rotation begins. CGRESET LIMITS are chosen to help the single-element problem
converge on initial loading. A rotation of 90° is then accomplished in 10 steps. The stress
state as a function of rotation is shown in Figure 8.8. The rotation algorithm is very
accurate; in fact, for this problem it is essentially exact.

8.1.3 Internally-Pressurized Sphere

A spherical geometry is chosen to demonstrate the performance of the nonlinear CG

method and to verify the axisymmetric coding in JAC2D. With a spherical geometry,
relatively simple loading conditions can be used to exercise a significant portion of the
code. For example, all the components of displacement, stress, strain, and material

g

Pressure ,,,,,,,,,"

// Rotation "'x -'"""

/ _ sss SSSSS

Y

_ss S

; 3

T

Figure 8.6. Description of Unit Square Rotation Problem.
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TITLE

ONE ELEMENT ROTATION TEST

HOURGLASS PARAMETER 2

INITIAL EQUILIBRIUM
CGRESET LIMITS 0, 12, I0

SOLUTION FUNCTION 1

OUTPUT FUNCTION 1

FUNCTION 1

0 I0

4.0

END
RESIDUAL TOLERANCE = .00001

MAXIMUM ITERATIONS = i00

ITERATION PRINT = 1

MATERIAL, I, 1

YOUNGS MODULUS 1 .0E6

END

PRESSURE 5,4,1
X DISPLACEMENT 4 ,2 ,i.

Y DISPLACEMENT 4 ,3 ,I.

X DISPLACEMENT 3

Y DISPLACEMENT 3

FUNCTION,4
0 I0000

4 i0000

END

FUNCTION, 2

0.0000000, 0.0000000

0.4000000, 0.0123117

0.8000000, 0.0489436

1.2000000, 0.1089938

1.6000000, 0.1909835

2.0000000, 0.2928941

2.4000000, 0.4122159

2.8000000, 0.5460110

3.6000000, 0.8435554

4.0000000, 0.9999833
END

FUNCTION, 3
0.0000000, 0.0000000

0.4000000, 0.1564346

0.8000000, 0.3090174

1.2000000, 0.4539911

1.6000000, 0.5877860

2.0000000, 0.7071076

2.4000000, 0.8090178

2.8000000, 0.8910072

3.2000000, 0.9510553

3.6000000, 0.9876868

4.0000000, 1.0000000

END

EXIT

Figure 8.7. Inputfor UnitSquare Rotation Problem.
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Figure 8.8. Stress Results for Unit Square Rotation Problem.

state variables are used. The sphere is layered so that multiple material models can be

utilized. Interface conditions are applied to verify the contact surface algorithm for fixed

interfaces. Loading and response is one-dimensional (radial), so that a small sector of

the sphere may be analyzed to obtain a high-resolution solution. The model can then

exercise skew-displacement boundary conditions.

An outside-to-inside radius ratio of 2.0 is chosen for the analyses. Two different

geometric idealizations are used, which will be referred to as the "quadrant" and "sector"

models, respectively. The models, which both use 40 elements though the thickness, are

shown in Figures 8.9 and 8.10. The quadrant model has four material layers joined by

fixed interfaces, and symmetry boundary conditions are applied on the two orthogonal

coordinate axes. With eight intervals in the circumferential direction, the quadrant mesh

has 320 elements and 396 nodes. The sector model covers a 5* sector of the sphere with a

single material block. One side is aligned with the coordinate axis and has displacement

constrained normal to that axis. The other side has normal displacement constrained by

use of the RZCONE DISPLACEMENT option. The sector mesh has 80 elements and 123
nodes.

With the sector model, JAC2D requires 118 iterations (0.14 CPU seconds) to reach

a convergence tolerance of 0.001. The input commands for this problem are shown in

Figure 8.11. Using the quadrant model, JAC2D requires 411 iterations (1.4 CPU seconds)
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Figure 8.9. Quadrant Finite Element Model for Sphere Problem.
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Figure 8.10. Sector Finite Element Model for Sphere Problem.

69



TITLE

ELASTIC SPHERE WITH PKESSURE LOADING

AXISYMMETRIC PROBLEM

ITERATION PRINT = I0

MAXIMUM ITERATIONS = 600

RESIDUAL TOLERANCE = .001

SOLUTION FUNCTION = I

OUTPUT FUNCTION = I

FUNCTION = 1 $ SOLUTION

0.0,I
1.0

END

FUNCTION = 2 $ PRESSURE LOADING

0.0,0.0

1.0,10000.0

END

PRESSURE = 5,2,1.0

Z DISPLACEMENT = 2

RZCONE DISPLACEMENT = 4, 95.0

MATERIAL I

ISOTHERMAL ELASTIC PLASTIC

YOUNGS MODULUS = I.OE7

POISSONS RATIO = 0.3

END

EXIT

Figure 8.11. Input for Sector Model, Pressurized Sphere Problem.

to reach the same convergence tolerance.

There is a simple analytic solution to this problem. The elastic solution given by
Mendelson [33, Equation 8.3.11] is

(i+ pu - (1 - 2#)r + _r_ ] E(b3/a 3- 1) '
(S.7)

where E and # are the elastic constants; r is the radial position; a and b are inside and out-

side radii, respectively; and p is the applied internal pressure. To obtain a geometrically-

nonlinear solution, this equation is solved iteratively, with the radial positions updated

at each new iteration to reflect the displacements just calculated.

The internal radial displacement as a function of circumferential position calculated

by JAC2D is compared to the analytic solution in Figure 8.12. Here, Young's modulus is

7O



1.0 x 10'r, Poisson's ratio is 0.3, and the applied internal pressure is 10,000. The analytical
solution gives a radia.1 displacement of 0.040049, independent of circumferential position,

shown as a solid line in Figure 8.12. The equatorial sector model (0 to 5°, marked
with circles in Figure 8.12) gives a radial displacement of 0.040045, which is barely
distinguishable from the analytic solution. The quadrant model (labeled "Quadrant 8")
gives a radial displacement that varies from 0.0399 at 0 = 0 (the "equator") to 0.0415 at
0 = 90° (the "north pole"). The constant-strain axisymmetric element formulation loses
some accuracy near the axis of symmetry.

To illustrate this behavior further, the quadrant model is subdivided into 16 intervals

circumferentially, then 32. As is evident in Figure 8.12, the JAC2D solution does converge
toward the analytic solution with increasing circumferential resolution. The model with
eight circumferential intervals has a maximum error of about 4%, which decreases to 1%
with 16 intervals and to 0.3% with 32 intervals. Finally, the sector model is repositioned

to be near the axis of symmetry (85° to 90° , marked with squares in Figure 8.12). Here,
the calculated displacement varies from 0.040031 to 0.040093, a maximum error of about
0.1%.

As is evident in this example, care should be taken when using axisymmetric elements

near the axis of symmetry. The analyst should verify that the mesh contains adequate
resolution to yield results of the desired accuracy.

4..17 -. ,.- , , I ' ' ' I ' ' ' I ' ' ' I ' ' '
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Figure 8.12. Radial Displacement for the Pressurized Linear Elastic Sphere Problem.
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8.2 Isothermal Elastic/Plastic Verification Problems

8.2.1 Rotating Ring

The rotating ring problem, shown in Figure 8.13, is included to verify the large-
rotation capability for elastic]plastic material reponse. The ring is given a slow in-plane
rotation and internally pressurized beyond the yield stress of the material. It is positioned

in the zy-plane with its center at the origin. The initial inside and outside radii are 0.95
and 1.05, respectively, and plane strain conditions are imposed. The ring material has
a Young's modulus of 10.3 x 106 a Poisson's ratio of 1, 5, a yield stress of 4.15 x 104, a
hardening modulus of 5.17 x 105, and a hardening parameter j3 of 1.0. During the pressure
loading sequence the ring is rotated by applying opposing horizontal displacements to a
pair of nodal points on the top and bottom of the ring, respectively, and opposing vertical
displacements to nodes on the left and right sides, respectively. Figure 8.13 shows the
ring before and after loading, with Element 1 shaded in both cases for reference. The
input for the ring problem is shown in Figure 8.14.

EXPANOINB AND ROTRTING RING
1 I ! I I I I

1.2

.8

.4

_-, ,0

-.4

-.8

-1.2

TIME .0000

I I I I I I TIME 18.00
- 1.2 -.8 -.4 .0 .4 .8 1.2

X

Figure 8,13. Geometry for the Rotating Ring Problem.
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TITLE
EXPANDING AND ROTATING RING

MAXIMUM ITERATIONS i000
ITERATION PRINT I0
GENESIS OUTPUT

MATERIAL I, 1
YOUNGS MODULUS i0.3 +6
POISSONS RATIO 0.333333333
YIELD STRESS 4.15+4
HARDENING MODULUS 5.17+5
HARDENING PARAMETER I. 0

END
SOLUTION FUNCTION 5
OUTPUT FUNCTION 4
TRIAL VELOCITY FUNCTION 3
FUNCTION I $ LOADING

0.0 0.0
1.0 40OO.0
2.0 5000.0
2.5 6000.0

i0.0 i0000.0
2O.0 15000.0

END

FUNCTION 2 $ DISPLACEMENT ROTATION FUNCTION
0.0 0.0

2O.O 1.055
END
FUNCTION 3 $ TRIAL DISPLACEMENT

0.0 0.0
4.O 0.0
4.25 1.0

20.O 1.0
END

FUNCTION 4 $ OUTPUT
0.0 9.0

18.0
END
FUNCTION 5 $ SOLUTION FUNCTION

0.0 1.0
1.0 1.0
2.O 8.O
2.5 30.0

i0.0 40.O
18.0

END
X DISPLACEMENT 4 2 1
Y DISPLACEMENT 3 2 -i
X DISPLACEMENT 2 2 -I
Y DISPLACEMENT 1 2 1
PRESSURE i0 1 1.0
RESIDUAL TOLERANCE 0. 005
EXIT

Figure 8.14. Input for the Rotating Ring Problem.
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Figure 8.15. Effective Stress Response of the Rotating Ring.

The effective stress as a function of time is depicted in Figure 8.15. The abrupt

changes in the slope of the curve reflect the change in the applied pressure rate. The
total rotation is approximately 45°, and all the elements exhibit identical response to
within the specified convergence tolerance. The effective stress calculated is the same as
it would have been had the ring not been rotated.

8.2.2 Hollow Sphere

Elastic/plastic analyses of the hollow sphere discussed in Section 8.1.3 were per-
formed to verify the isothermal elastic/plastic material model. A yield stress of ay =
10,000 is used for all the analyses.

The first problem considers the material to be perfectly plastic. When enough
pressure is applied, yielding begins on the inside surface. As the pressure is increased

further, thc plastic zone expands radially until the entire sphere has yielded. The radius
c of the elastic/plastic interface is related to the applied pressure p by the following
equation given by Mendelson [33, Equation 8.3.5]:

P=21np_+g 1 ¢/_
(s.8)

Here, the dimensionless variables are P = p/ay, p_ = c/a, and _ = b/c. Once the
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interface radius is computed, the dimensionless effective stress S - Io'e- a,.I/a _ in the
outer elastic region reduces to simply c3/r 3. By definition, the dimensionless effective
stress is unity in the plastic region.

For the finite element solution to this problem, internal pressure is applied first to
the quadrant-8 model and the material is considered to be perfectly plastic. Sufficient

pressure is applied on the first load step to initiate yielding on the inside surface (letting
c = a in Equation 8.8). The pressure is then increased in 20 equal load steps to the point
that the entire sphere should have yielded (c = b). The effective stress along a radial
line from an element on the inside surface to an element on the outside surface for load

steps 1, 6, 11, 16, and 21 are shown in Figure 8.16, where it is compared to the analytic
solution. A convergence tolerance of 0.001 is specified in JAC2D. For a perfectly plastic
material, there is no equilibrium solution when internal pressure causes the entire sphere
to yield. (The balloon pops!) Thus, on the last load step JAC2D does not converge to the
specified equilibrium tolerance, although the stresses resulting from the non-equilibrium
final state indicate that the sphere has indeed completely yielded. The first twenty load
steps require a total of 4,215 iterations for the quadrant model.

The analysis is repeated using the sector model, shown with x's in Figure 8.16. This
idealization produces slightly higher effective stresses, particularly at the later load steps.

1'1L ' I ' , ' ,.... ' , ' I ' , ' , ' , ' I ' ....
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Figure 8.16. Effective Stress Distribution for the Pressurized
Elastic/Perfectly-Plastic Sphere Problem.
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It takes 2,248 iterations to solve the first twenty load steps using the sector model. Both
JAC2D analyses predicted higher stresses than the analytic solution, more noticeable at
the higher pressures. This is probably due to the fact that the analytic solution assumes
linear geometry, whereas the JAC2D analyses are geometrically nonlinear.

The next problem includes linear strain hardening in the material plasticity. The
radius of the elastic/plastic interface'for this case is computed from [33, Equation 8.6.20]

2(1 -m)(1 1/_)
P = _m(1 - #)(1 - 11/33)pa + 2(1 - m) lnp, + : - (8.9)

1 - m + 2m(1 - #)

where m is the ratio of the hardening modulus to Young's modulus, # is Poisson's ratio,

and 13 = b/a. When m = 0, this problem reduces to the perfectly-plastic case. The
effective stress in the elastic region is the same as before, whereas in the plastic region
[33, Equation 8.6.22] 1,

S = 1 - m + 2m(1 - #)ca/ra . (8.10)
1 -m+ 2m(1 -#)

This problem is analyzed using the quadrant model with a strain-hardening modulus

of 1.0 x 10s (m = 0.1). Because of the strain hardening, a higher final pressure is
required to yield the entire sphere. Moreover, because the material continues to harden
with increasing strain, the last load step is stable and converges easily. The results are

shown in Figure 8.17. For the later load steps, the finite element solution predicts slightly
higher stresses than the analytic solution. Once again, this is likely due to the geometrical
nonlinearity accounted for in the JAC2D solution. For comparison, the first 20 load steps
in this problem required a total of 4,007 iterations.

To verify the use of thermal loads in the JAC2D program, the sphere is analyzed

using a sequence of steady-state thermal loads obtained by raising the temperature of the
inside surface while the outside surface temperature is held at zero. The analytic solution

for this problem is taken from Section 5.4 of Reference [34], with notation changed slightly
for compatibility with the foregoing discussion. Denoting the inside surface temperature
by To and the coefficient of thermal expansion by a, a dimensionless thermal load is
defined as

Ec_To

r -- ay(1 - It) ' (8.11)

Yielding begins at the inner surface due to hoop compression and expands outward. The
radius c of the initial elastic/plastic interface is found by solving

C (2 [ --r__ 2 (a _)1 2/b3.+..ln(c3/a3)](2+ j

Letting a = 0.00001 and using the previous elastic/perfectly-plastic material properties
and geometry, initial yield at c = a occurs at To = 98.0 °. Since there is no strain

l-rn
1The expressionfor S0 in the referencedequation is missing the term + 1-m+2_(1-u)"
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Figure 8.17. Effective Stress Distribution for the Pressurized Elastic/Plastic
Strain-Hardening Sphere Problem.

hardening, the dimensionless effective stress S in the plastic region remains at unity. In
the elastic region, S is given by

_3b 3 ab (8.13)
S = hr.-fir3 - V2r(b_ a) '

where

-_c3[ I-elbA'In(c/a) ] . (8.14)
B

2 (-_Jr c/b)(1 - c/b) 2

When the plastic boundary has advanced to a radius cl, a second plastic zone is
initiated at the outer surface due to hoop tension• The radius Cl is found by solving

lnC_=--2b 1- . (8.15)
a 3cl

For the present problem, cl/a has a value of 1.197 and occurs at an inner surface temper-

ature (from Equation 8.12) of 264.8 °. Above this temperature, the second plastic zone
spreads inward from the outer surface while the inner plastic zone continues to spread
outward. When there are two separate plastic zones, Equation 8.12 no longer holds.
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Instead we must simultaneously solve for both elastic/plastic boundaries, using

r = 2 d l+ (8.16)
a 1 -c/d

In _-_ = 3"d -1 , (8.17)

where d is the radius to the boundary of the outer plastic region. The stresses in the

elastic region are obtained from Equation 8.13 with

[ 1B = 2_ 3(1 - cld)J " (8.18)

For the J AC2D calculation, the initial load step corresponds to To = 98°. Solutions
are then calculated using the quadrant model for 20 equal steps in which To is progres-
sively increased to 600°. The resulting effective stress vs. radial position at load steps l,
6, 11, 16, and 21 is shown in Figure 8.18 and compared to the analytic solutions. As with

the previous two solutions, the agreement is very satisfactory. Reaching a convergence
tolerance of 0.001 requires 2,914 total iterations.
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Figure 8.18. Effective Stress Distribution for the Thermally-Loaded

Elastic/Perfectly-Plastic Sphere Problem.
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Appendix A
JAC2D v5.1 Input Instructions

Two input files are needed by the JAC2D program. Nodal point, element identification,
boundary conditions and contact surface data are generated by a mesh generator in
the GENESIS data format on unit 9. The second input file, unit 5, contains control

information including problem definition, output options, solution control, boundary
conditions, function data and material properties. To _ssociate sets of nodes or element
sides with a boundary condition, flags are prescribed which correspond to the same flag
for a set of either nodes or element sides in the GENESIS unit 9 file.

For the unit 5 file, free-field input is used and each input line is identified by several
descriptive words. The format is the description followed by data. The order of the
input is not important, except that data for each function and material must be grouped
together. The first three letters of each word, if it contains three letters, must be spelled
correctly, and all words must be present. The free field input allows the user to delineate
entries by either a blank, a comma, or an equals sign. A dollar sign indicates that
whatever follows on the line of input is a comment and is ignored. An asterisk indicates
that the current input line is to be continued on the next line. An EXIT record will

terminate the input. The following describes each line of datk.

A.1 Problem Definition

TITLE
Enter a suitable title on the next line.

AXlSYMMETRIC PROBLEM

The default is a plane strain problem.

PLANE STRAIN PROBLEM
This is the default.

THERMAL PROBLEM source, nfunct

The default is an isothermal problem. If source is blank, then nfunct is ignored
and temperatures must be supplied on unit 58 for a thermal problem. Temperature
records are of the form

READ(58) TIME, (TEMP(I), I=1, NUMNP)

where NUMNP is the total number of nodes. If source is set to INTERNAL, a spatially-
uniform temperature field is generated for each time step from the function nfunct,
and unit 58 is not read.
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DISTRIBUTED LOADS

The default is to apply no distributed body forces. Loads in force per unit mass
must be supplied on unit 38 if this keyword is specified. Distributed load records
are of the form

READ(38) TIME, ((DISTL(J,I),I=l, NUMNP), J=l,2)

where NUMNP is the total number of nodes.

LINEAR PROBLEM

The default is a geometrically nonlinear problem.

NONLINEAR PROBLEM
This is the default.

TRIAL LINEAR

To help sometimes in accelerating solution convergence for problems involving large
rotations, the trial linear option can be tried. Two iteration passes will be attempted
on the first load step. The first pass uses linear geometry assumptions and the second

pass does a full nonlinear geometry solution using the linear solution as an initial
guess. The default is that no trial linear solution will be calculated for the solution
of the first load step.

INITIAL EQUILIBRIUM etime

This specifies that JAC2D calculate an initial equilibrium state before the first load
step. Etime is a dummy time increment to be passed to any rate-dependent material
models. Two equilibrium passes arc, m_de prior to beginning the load history; the
displacements are zeroed out and the state variables reinitialized after each pass.
Two passes are used because of geometrical nonlinearities; a stress state in equilib-
rium in a deformed configuration may not still be in equilibrium when displacements
are rezeroed. The default is that initial equilibrium is not calculated before taking
the first load step.

RESTART PROBLEM

If this command is input, a restart of the problem at the first time specified by the
solution control function is executed. Restart data is expected on unit 32. All the

input necessary to set up the problem must be included (i.e,, GENESIS data should
be on unit 9 and control information should be on unit 5). The restart file, unit
32, only contains the necessary information to establish initial mechanics conditions
for the solution and is written in the EXODUS file format. The default is that the

problem is not restarted.

A.2 Output Options

GENESIS OUTPUT

This specifies that the GENESIS mesh information be echoed on the ASCII output
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file, unit 6. GENESIS is the mesh portion of the EXODUS data format. The default
is that detailed mesh information is not written on the printed output.

ITERATION PRINT n

Several variables which will allow the monitoring of the iteration process during a
load step are written to the output file every n iterations. The default is that no
intermediate information is written.

OUTPUT FUNCTION nfunct
Nfunct specifies the function which will be used for determining when printed solu-
tion output will be written. The function value(i) at time(i) is the number of times
the output will be written between time(i) and time(i + 1). If this is not input, data
for all the nodes and elements will not be written. If output for a load step is not
selected, only an iteration summary is written to the output file, unit 6.

PLOT FUNCTION nfunct

Nfunct specifies the function which will be used for determining solution plot output
times in the EXODUS format on unit ll. The function value(i) at time(i) is the
number of times the output will be written between time(i) and time(i + 1). If this
is not input, data will be written for every time step.

WRITE RESTART FUNCTION nfunct
Nfunct specifies the function which will be used for determining the times when data
is written to unit 30 for later use in restarting the problem. The function value(i)

at time(i) is the number of times the output will be written between time(i) and
time(i + 1). If this command is not input, no restart data will be written.

A.3 Solution Control

SOLUTION FUNCTION nfunct

Nfunct specifies the function which will be used for determining solution time incre-
ments. The function value(i) at time(i) is the number of times the solution will be
calculated between time(i) and time(i + 1). Therefore,

Atirne = tirae(i + 1)- time(i)
value(i)

A SOLUTION FUNCTION command must be input.

DISPLACEMENT TOLERANCE tolu

This applies to the relative change in the norm of the incremental displacement
vector within the last iteration. The default convergence tolerance is 1.0 x 10-1_.

RESIDUAL TOLERANCE tolr

This applies to the norm of the residual force vector divided by the norm of the
applied loads vector. The default convergence tolerance is 1.0 x l0 -3.
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MAXIMUM TOLERANCE tolrmx

This is a fallback tolerance which applies to the same quantity as tolr. Its default
value is zero.

MAXIMUM RESIDUAL residf
This applies directly to the residual force vector. Convergence is assumed when its
norm is less than residf. This criterion is used primarily in the absence of applied
loads. Residf defaults to zero.

MAXIMUM ITERATIONS nimaz

The default is the number of degrees of freedom.

If there are no significant applied loads, convergence is assumed if the norm of the residual
force vector is less than residf. Otherwise, if either the displacement or residual tolerance
is satisfied, the program assumes the load step has converged. If the convergence criteria
are not satisfied within nimaz iterations, JAC2D will first go back to the iterate xjmi,,
if any, that it was tracking for the smallest residual during the load step iterations (see

the discussion under CGRESET LIMITS below). If the relative size of the corresponding
residual rj,,i, is less than tolrmx, then xj_. is accepted, and JAC2D will proceed to the
next load step. If not, xj_i. is written to the plot file and the analysis is terminated.

CGRESET LIMITS itstrt, itrset, tolfac
These parameters control logic that resets the conjugate gradient iteration scheme.
When the conjugate gradient (CG) iteration is not converging, JAC2D picks a new

initial guess "on the fly," selecting as its new guess the vector xj_. that has produced
the smallest residual rjm_.so far in the current load step. The first parameter, itstrt,
specifies how many iterations to wait before looking for a minimum residual (i.e.,

JAC2D requires that j_a, > itstrt). The default value is NDOF/100. ltrset specifies
the number of iterations to allow between finding a minimum and restarting the CG
algorithm. The default value of itrset is NDOF/2. The third parameter, tolfac, defines
how much growth in the residual norm indicates divergence. Its default is 1000.

TRIAL VELOCITY FUNCTION nfunct

Nfunct specifies a function which will be used for determining a multiplier, which
when applied to the last incremental displacement field, will generate an initial guess
for this load step. The value(i) at time(i) will be used as the multiplier for all load

steps between time(i) and time(i + 1) (values are not interpolated). For problems
where the solution varies smoothly over many load steps, a trial velocity factor of

1.0 can significantly increase the rate of convergence. Conversely, for problems with
several disjoint load steps or abrupt changes in loading direction, a trial velocity can
hinder convergence. The default is no trial velocity.

HOURGLASS PARAMETER value

Reduced-integration elements such as those in JAC2D are subject to hourglass

("zero-energy" or "spurious deformation") modes. The current formulation uses
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Flanagan's orthogonal stiffness formulation to control these modes. Value is a mul-
tiplier on the stiffness calculated by this formulation. The amount of stiffening was
internally calibrated to give a correct bending response for the cantilever beam sam-
ple problem. Generally the default multiplier of 1.0 is suitable. In some problems
where hourglass modes are excited by the loading conditions, increasing value may
be helpful.

A.4 Boundary Conditions

Plane Strain Problem

X DISPLACEMENT iflag, nfunct, revalue
Y DISPLACEMENT iflag, nfunct, revalue
X FORCE iflag, nfunct, mvalue
Y FORCE iflag, nfunct, mvalue

Axisymmetric Problem

R DISPLACEMENT iflag, nfunct, revalue
It is a good practice to always set radial displacement to zero at r = 0.

Z DISPLACEMENT iflag, nfunct, revalue
R FORCE iflag, nfunct, mvalue
Z FORCE iflag, nfunct, mvalue

For displacement and force boundary conditions, the value of iflag must correspond
to a nodeset flag in the GENESIS data file. If nfunct is zero or blank, then a zero
condition is applied; otherwise, the value of the function at the end of the load step

times rnvalue, the multiplier value, is applied. For axisymmetric problems, the forces
should be specified per unit radian. Linear interpolation is used to determine the
function value for all loading functions. The default value of rnvalue is zero.

Plane Strain Problem

XYPLANE DISPLACEMENT iflag, angle
This keyword specifies that there be no displacement normal to a plane perpendicular
to the xy-plane of the analysis, and it is useful for modeling certain symmetry
conditions, lflag is a nodeset boundary flag number, and angle is the orientation of
the constraint plane's normal vector, measured counterclockwise from the x-axis in
degrees.

Axisymmetric Problem

RZCONE DISPLACEMENT iflag, angle

This keyword specifies that there be no displacement normal to a cone generated
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about the z-axis of the analysis. Iflag is a nodeset boundary flag number, and
angle is the orientation of the normal to the constraint cone's generator, measured
counterclockwise from the r-axis in degrees.

Plane Strain Problem

X GRAVITY FUNCTION nfunct
Y GRAVITY FUNCTION nfunct

For gravity body forces, the total load is specified by using the value f(t) of the
specified function at the end of the load step along with the density, which is specified
in the material data. Load = density x volume x f(t), with volume calculated by
the JAC2D program (assuming a unit thickness).

Axisymmetric Problem

CENTRIFUGAL FORCEFUNCTION nfunct
Z GRAVITY FUNCTION nfunct

For centrifugal body forces, the total load is specified by using the value f(t) of
the specified function at the end of the load step along with the density, which is
specified in the material data. Load = density x volume x f(t) x r, with volume
and radial coordinates calculated by the JAC2D program (assuming a unit-radian
wedge).

PRESSURE iflag, nfunct, pvaluel, pvalue2
For pressure boundary conditions, iflag must correspond to a sideset flag in the
GENESIS data base. The magnitude of the applied pressure is determined by mul-
tiplying the value of the function at the end of the load step by pvaluel. A shear
traction proportional to the function value may also be applied to the boundary by
specifying a nonzero pvalue2. A positive shear traction applies a counterclockwise
force, and produces a negative shear stress in the element. The default value of both
pvaluel and pvalue2 is zero.

USER PRESSURE iflag, pvaluel, pvalue2
This input record directs the code to call SUBROUTINEBNDUPRonce at each load
step to get a pressure and shear traction distribution. There is a dummy routine to

serve as a template in $ACCESS/ACCESS/amalysis/jac2d/brtdupr.f which defines
the calling arguments. Iflag must correspond to a sideset flag in the GENESIS data
base. PvalueI and pvalue2 are passed to the user subroutine in the PBC array.

SLIDING SURFACE mflag, sflag, coeff, dtolr, ftolr, stolr
FIXED SURFACEmflag, sflag, dtolr

Contact surfaces are specified by associating the master surface flag mflag and the
slave surface flag sflag to corresponding sideset flags in the GENESIS data base.

Coeffis the coefficient of friction. Its default is zero.
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Dtolr is a displacement tolerance within which the two surfaces are assumed to be
in contact (in other words, a capture distance). Its units are relative to the length
of the master element surface. The default is 1.0 x 10-z.

Ftolr is the value of force which must be exceeded for a SLIDING SURFACE to be

allowed to separate once contact has been established. The default is 1.0 x 10a°. A
FIXED SURFACE is never allowed to separate once contact is established.

Stolr specifies the penetration distance within which to capture a slave node, in units
of master-surface length. It defaults to 0.1.

A.5 Function Data

FUNCTION n

time(2), value(2)

o •

time(m), value(m)
END

Function data are input as pairs of data, with one pair per record. The data is terminated

by an END record. Care should be taken because different input quantities make use of
function data differently. It is suggested that the functions be numbered consecutively
from one, because the function number n is used as an index into the function data array.

A.6 General Material Data

The following data may be input for all materials. The general material data must be

accompanied by parameters specific to the material models, which are outlined in the
following section.

MATERIAL id, itype
The id should correspond to an element block ID in the GENESIS data file. ltype
refers to the material type and is optional if the material model title, such as
ISOTHERMAL ELASTIC PLASTIC, appears on the next line.

TEMPERATURE value_l, wlue_2, ..., value_a
THERMAL STRAIN value_l, value_2, ..., value_r,

An arbitrary number of pairs of temperature versus strain may be input, and linear
interpolation is used to calculate the thermal strain at a specified temperature. The
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problem is assumed strain-free initially, and loading is prescribed by calculating
increments of thermal strain for each load step. (An increment in thermal strain
divided by the corresponding temperature increment gives the coefficient of thermal

expansion for a material.)

DENSITY value
The default is zero.

BIRTH TIME value
The default is zero.

DEATH TIME value

The default is 1.0 x I03°. One set of birth and death times applies to all the elements
in the problem with the same material ID.

INITIAL STRESS sigxxO,sigyyO, sigzzO, tauzyO
STRESS GRADIENT gradxx, gradyy, gradzz, gradx9

All the elements of the material are initialized with the stress components computed
by, for instance,

crx_o= sigxxO + y x gradxz ,

where y for each element is calculated by averaging the y-coordinates (z-coordinates

for an axisymmetric problem) of all its nodes. The STRESS GRADIENT input record
may be omitted if a constant initial stress is desired. The default is to apply no initial
stress.

A.7 Specific Material Data

One set of the following data must be included with a set of general material data for
each materiai. Enough data must be specified to define a real material. All values are
defaulted to zero.

Material Type 1: Isothermal Elastic Plastic

The formulation of this model is described in SAND81-0998, "JAC--A Two-Dimensional

Finite Element Computer Program for the Non-Linear Quasistatic Response of Solids
with the Conjugate Gradient Method," pp. 22-24.

YOUNGS MODULUS value

POISSONS RATIO value

YIELD STRESS value

The default of zero results in an elastic material.

HARDENING MODULUS value
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BETA value

This value ranges from 0.0 to 1.0. Zero means only kinematic hardening occurs,
while 1.0 means only isotropic hardening occurs.

END

An END record terminates each set of material data.

Material Type 2: Temperature Dependent Elastic Plastic

The formulation of this model is described in SAND81-0998, "JAC--A Two-Dimensional
Finite Element Computer Program for the Non-Linear Quasistatic Response of Solids
with the Conjugate Gradient Method," pp. 24-25.

YOUNGS MODULUS value_l, value_2, ... , value_n
POISSONS RATIO value_l, value_P, ... , value_n
YIELD STRESS value_l, value_2, ... , value_n
HARDENING MODULUS value_l, value_2, ... , value_n

The values of the temperature-dependent material parameters are given at the n
temperatures specified on the TEMPERATURE input record for this material block.
Values are interpolated to the temperature of the element. If the element tempera-
ture goes outside the range of temperatures given, values are extrapolated from the
nearest two input values.

BETA value

This value ranges from 0.0 to 1.0. Zero means only kinematic hardening occurs,
while 1.0 means only isotropic hardening occurs.

END
An END record terminates each set of material data.

Material Type 3: Temperature Dependent Secondary Creep

The original formulation of this model is described in SAND81-0998, "JAC_A Two-

Dimensional Finite Element Computer Program for the Non-Linear Quasistatic Response
of Solids with the Conjugate Gradient Method," pp. 25-27, and uses a semi-analytic in-
tegration developed by R. Krieg. The integration has since been replaced by a vectorized
forward Euler method developed by C. Stone, H. Morgan, and M. Blanford, and will be
documented in a forthcoming SAND report.

YOUNGS MODULUS value_l, value_2, ... , value_n

POISSONS RATIO value_l, value_2, ... , value_n

CREEP CONSrANT value
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STRESS EXPONENT value

THERMAL CONSTANT value

END
An END record terminates each set of material data.

CREEP CONSTANT, STRESS EXPONENT, and THERMAL CONSTANT (= Q/R) are
constant with respect to temperature. If a THERMAL PROBLEM is not specified, then
the material temperature is assumed to be the value_l given on the TEMPERATURE
record for this material block, and the first value for YOUNGS MODULUS and POISSONS
RATIO is used.

Material Type 4: Isothermal Soil and Crushable Foam

This model was developed by R. Kreig, SC-DR-72-0883, "A Simple Constitutive De-
scription for Soils and Crushable Foams." The JAC2D implementation is described in
SAND81-0998, "JAC--A Two-Dimensional Finite Element Computer Program for the

Non-Linear Quasistatic Response of Solids with the Conjugate Gradient Method," pp.
27-28. Note that the formulation differs slightly from that in PRONTO and SANTOS,
so values for the material parameters should not be moved directly between the codes.

SHEAR MODULUS value

BULK MODULUS value

A0 value

A1 value

A2 value

PFRAC value

PMAX value

VOLUME STRAIN value.t, value_2, ... , value_8

PRESSURE value_l, value_2, ... , value_8

END
An END record terminates each set of material data.

Material Type 5: Orthotropic Elastic

This model is as yet undocumented, but should be fairly self-explanatory. Currently
material directions must be aligned with the global axes.
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!

YOUNGS MODULUS Ex=, E_:I,Ez,

POISSONS RATIO u_, u,_, v,_

SHEAR MODULUS G_

END
An END record terminates each set of material data.

For a transversely isotropic material,

Ex_=E_y = E,

Vzy "-- Vy z -" V,

Vzx --- Vzy -- Vs n

E,
G_ = = G, .

2(1-t- v,)

Material Type 7: Power Law Hardening Elastic Plastic

This model was developed by C. Stone, G. Wellman, and R. Kreig at Sandia National
Laboratories, Albuquerque, New Mexico. For documentation, see SANDg0-0153, "A Vec-

torized Elastic/Plastic Power Law Hardening Material Model Including Liiders Strain."

YOUNGS MODULUS value

POISSONS RATIO value

YIELD STRESS value
The default of zero results in an elastic material.

' HARDENING CONSTANT value

HARDENING EXPONENT value

LUDERS STRAIN value

END
An END record terminates each set of material data.

Material Type 10: Sandia Damage Model

This model was developed by D. Bammann, G. Johnson, and M. Chiesa at Sandia Na-
tional Laboratories, Livermore, Califolnia. For documentation, see for instance SAND90-

8227, "A Strain Rate Dependent Flow Surface Model of Plasticity."

YOUNGS MODULUS value_I, value_2, ..., value_n
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POISSONS RATIO value.I, value_2, ... , valuc_n

HEAT COEFFICIENT value

Heat generated from plastic work o.9(p--e-:).This is not currently implemented.

INITIAL DAMAGE value

This must be nonzero for evolution of damage to occur.

DAMAGECONSTANTvalue

C1 value
C2 value

V = cl e-c2/O

C3 value
C4 value

Y = c3eC4/e

C5 value
C6 value

f = cse-ce/°

C7 value
C8 value

rd = CTe -c8/0

C9 value
CIO value

h = cgec_°/°

Cll value
C12 value

rs "- ell e-c12/0

C13 value
C14 value

Rd = C13e-cl4/e

C15 value
C16 value

g = clse c16/°

C17 value

C18 value

Rs =ClTe -clS/O

END
An END record terminates each set of material data.
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Appendix B
JAC2D v5.1 Output Description

B.1 General Printed Output

Printed output begins by echoing the input data from unit 5. The GENESIS input

data is also echoed if the GENESIS OUTPUT input record has been specified. A large

amount of data should be expected when printing the GENESIS data. The input section

ends with summary of the dynamic memory allocation for the problem.

Each load step produces at least one page of printed output. This page is printed

even if the user has not requested output for the time step.

SOLUTION TIME = time

OUTPUT FOR LOAD INCREMENT n

SUM OF X OR R REACTIONS .... rx

SUM OF Y OR Z REACTIONS ry
NORM 0F APPLIED FORCES fn

RESIDUAL FORCE NORM rn

RESIDUAL FORCE TOLERANCE rnn

INCREMENTAL DISPLACEMENT NORM un

INCREMENTAL DISPLACEMENT TOLERANCE --- unn

CPU TIME FOR LOAD STEP tl

TOTAL CPU TIME ............... t2

NUMBER OF ITERATIONS ON FIRST PASS .... npass(1)

NUMBER OF ITERATIONS ON SECOND PASS --- npass(2)
TRIAL VELOCITY FACTOR factd

Rx and ry are the total reactions resulting from application of the loads. They can

be compared to the applied loads to obtain a measure of the state of convergence of the

solution. Of particular interest are the reactions in directions where the applied load is

zero. The conjugate gradient method will generally get the reaction in the direction of

the nonzero applied load first in the iteration process, and then reduce the other reactions
to zero.

The applied force norm fn and displacement norm un are used to calculate ran

(= rn/fn) and unn, respectively, which are compared to the specified residual tolerance
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tolr and displacement tolerance tolu. The residual force norm rn is also compared directly
to the specified lllaXilllUnl residual residf. These quantities can be used as a measure
of how close the load step has come in the event tile program stops before satisfying

convergence.

The amount of central processor computer time is given for the current load step
and the total time used for the job.

The number of iterations that are used for the current load step is printed to give the

user a measure of how fast the load step has converged. If either the TRIAL LINEAR or
LINEAR PROBLEM option is used, npass(1) is the number of iterations of convergence
of the trial linear or linear solution. For tile TRIAL LINEAR option, npass(2) is the
number of iterations needed for the nonlinear solution to the first load step. For a

nonlinear problem without the TRIAL LINEAR option, npass(1) is tile total number of
iterations needed for the load step.

Factd is a multiplier used to scale the velocity vector from the previous load step to
obtain a trial velocity vector as an initial guess for the current load step.

Further output is produced at the solution times specified by the OUTPUT FONc.
TION. Current coordinates and displacements of each node are listed, with X and ','

(or R and Z) denoting the coordinates and DISX and DISY (or DISR and DlSZ) denoting
the components of total displacement. Components of stress in the current deformed
configuration carry the labels SlGX, SlGY, SIGZ, and SlGXY (or SlGR, SlGZ, SIGT, and

SIGRZ). The element temperature is called TEMP.Strains are not calculated or output
by the program. If a load step does not converge, current values of these variables are
written to the output file for diagnostic purposes before the program exits.

B.2 Contact Surface Printed Output

Contact surface data is printed in the following format at the times specified by the
OUTPUT FUNCTION.

INTERFACENUMBER n

NUMBER MASTER - SLAVE LOCATION NORMAL NORMAL

ELEMENT NODE ETA DISPLACEMENT FORCE

The output is ordered first by INTERFACENUMBER,and then by the NUMBER in the overall
list of interface slave nodes.

MASTERELEMENTis the number in a list of the total number of ,naster element

faces with which the SLAVE NODEis interacting. SLAVENODElists the node's global node
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number. An interface condition of FIXED, SLIDING, or NO CONTACTis indicated beside
the node number. For a slave node to be in contact, the value of ETA must be greater

than -1.01 and less than +1.01. A slave node that is penetrating its master element
face will have a NORMALDISPLACEMENTless than the dtolr value specified for the contact

sure'ace. For a sliding surface slave node to be in contact with a master element face, the
value of the NORMALFORCEmust be less than the value of ftolr specified for the surface.

B.3 Interim Iteration Printed Output

If the ITERATION PRINT command is used, the following output is obtained every

n iterations.
J

LOAD NUMBER OF X Y FORCE DISPLACI_4ENT

STEP ITERATIONS REACTION REACTION TOLERANCE TOLERANCE

The quantities listed under the last four headings are the intermediate values of rx, ry,
run, and unn, respectively, which are described in Section B.1.

B.4 Plot Data Output

A plot output file is written in the EXODUS format on unit 11 by JAC2D for post-
processing. The following variables are written to the EXODUS file for each solution
time specified by the PLOT FUNCTION. The names listed here correspond to a plane

strain problem; analogous names are used for an axisymmetric problem with R, Z, and
T replacing X, ¥, and Z, respectively. If a load step does not converge, current values
of these variables are written to the EXODUS file for diagnostic purposes before the

program exits.

B.4.1 Global Variables

Name Description
RN Residual force norm
RNN Residual force tolerance

ON Incremental displacement norm
UNN Incremental displacement tolerance
FN Applied force norm
RX Total reaction force in the x-direction

RY Total reaction force in the y-direction
ITER Cumulative total number of iterations
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B.4.2 Nodal Variables

Name Description
DISPLX Total displacement in the x-direction
DISPLY Total displacement in tile y-direction
RESIDX Total residual force in the x-direction

RESIDY Total residual force in the y-direction

Components of the residual forces--RESIDX and RESIDY--are the values of the resid-
uals at the end of the load step. If the load step does not converge, it is sometimes useful
to plot the residuals to identify areas of the mesh wtmre convergence is difficult.

B.4.3 Element Variables

Name Description
SIGXX Stress cr_

SIGYY Stress ayy
SIGZZ Stress azz

TAUXY Stress T_y
EPXl

EPX2 Material history variables

TEMP Temperature at the center of the element

B.4.4 Material History Variable Names

The values in the history variable arrays depend upon the material models used in

the analysis. The following is a description of the variables by material type.

Material Type 1: Isothermal Elastic Plastic

Name Description

EPX1 Yield surface center stress component a_

EPX2 Yield surface center stress component cr_y
EPX3 Yield surface center stress component azz

EPX4 Yield surface center stress component 7_y
EPX5 Accumulated plastic strain
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Material Type 2: Temperature Dependent Elastic Plastic

Name Description
EPX1 Yield surface center stress component crx_

EPX2 Yield surface center stress component crvv
EPX3 Yield surface center stress component cr_

EPX4 Yield surface center stress component rxv
EPX5 Yield surface radius

Material Type 3: Temperature Dependent Secondary Creep

Name Description
EPX1 Accumulated creep strain

Material Type 4: Isothermal Soil and Crushable Foam

Name Description

EPXl Maximum previous volumetric strain (positive in compression)
EPX2 Current value of volumetric strain at which tensile fracture will occur

EPX3 Current value of volumetric strain (positive in compression)

Material Type 5" Orthotropic Elastic

There are no history variables for this material model.

Material Type 6" Isothermal Elastic Truss

There are no history variables for this material model.

Material Type 7" Power Law Hardening Elastic Plastic

Name Description
EPX1 Accumulated plastic strain

Material Type 10" Sandia Damage Model

Name Description

' EPX1 Backstress component a_

EPX2 Backstress component c_vv
EPX3 Backstress component c_z

EPX4 Backstress component c_y
EPX5 Hardening scalar k
EPX6 Void fraction ¢

EPX7 Void fraction rate.,
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Appendix C

Adding a New Constitutive Model to JAC2D

A material model is identified by a name and a number. For example, the isothermal

elastic/plastic model is named ISOTHERMAL ELASTIC PLASTIC and is Material Type 1.

A new material model can easily be added to the JAC2D code. The interface consists of

the following items.

C.1 Initialization of Variables

Several COMMON variables associated with the material models are initialized in

the main program. MAXMCis the second dimension of the EE array used to store tem-

perature/thermal-strain pairs and material constants. The leading dimension of this

array may dynamically grow to the maximum number of temperature points specified

on a TEMPERATURE input record, but it will always be at least 8. Therefore, there are

8 x (MAXMC- 2) locations available to the material model to store material constants. If

more space than this is needed, MACMCmay be increased. MAXMffrdefines the maximum

number of material constants for any material that has a temperature dependence, and

it is used to dimension the CM array. Thus if the program contained only the isothermal

elastic/plastic model, these variables would be initialized as shown below:

MAXMC = 7

MAXMCT = 0

Associated with the material number is the number of state variables in the model

(other than stress). In the main program, the following assignments specify the number
of state variables for each model:

IEPSIZ(1) = 5

IEPSIZ(2) = 5

IEPSIZ(3) = 1

IEPSIZ(4) = 3

IEPSIZ(5) - 0

IEPSIZ(6) = 0

IEPSIZ(7) = I

IEPSIZ(8) = 0

IEPSIZ(9) = 0

IEPSIZ(IO) = 7'
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For example, the isothermal elastic/plastic model (Material ]ypc 1) needs fiw.' storage

locations (four backstress components and one storage location for tile effectiw_ pla,stic

strain). As presently programmed, ten models can be included. The number of models

can be increased by changing the dimension of the IEPSIZ array in the EPSZ common
block:

COMMONEPSZ/IEPSIZ(10) ,NEPSIZ/

If the maximum number of state variables is increased beyond 12 for any material model,

then additional names must be added to the arrays NAMEELand NMRSEL in SUBROUTINE

IN, and the PARAMETERs that govern their size must be increased correspondingly. By

convention, the state variable names begin with EPX:

PARAMETER (NCORD=2, NVARNP=6, NVAREL=I8, NGLOBL=8)

PARAMETER (NVRSNP--4, NVRSEL=24)

DATA NAMEEL/'SIGXX' 'SIGYY' 'SIGZZ J

I 'TAUXY' 'TEMP' 'DEATH'

2 'EPXI' 'EPX2' 'EPX3' 'EPX4' 'EPX5' 'EPX6'

3 'EPXT' 'EPX8' 'EPX9' 'EPXIO' 'EPXII' 'EPXI2'/

DATA NMRSEL/'SIGXX' 'SIGYY' 'SIGZZ' 'TAUXY'

I 'gPXl' 'EPX2' 'EPX3' 'EPX4' 'EPX5' 'EPX6'

2 'EPX7' 'EPX8' 'EPX9' 'EPXIO' 'EPXII' 'EPXI2'

3 'COSTHETA' 'SINTHETA'

4 'STRECHXX' 'STRECHYY' 'STRECHZZ','STREC_IXY '

5 'HGX' 'HGY'/

Here NVAREL is the dimension of the NAMEEL array, while NVRSEL is the dimension of the

NMRSEL array.

C.2 Material Input and Output

The procedure for reading and echoing model data will now be described. The

isothermal elastic/plastic model will be used as an example of the statements that must

be included for a new material. First, in SUBROUTINE IN, the material type number is

stored in the array MTYPE.

ELSE IF(WORD1 .EQ. 'ISO' .AND. WORD2 .EQ. 'ELA' .AND.

1 WORD3 .EQ. 'PLA') THEN

MTYPE (MATNUM) = i
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The material constants to be input are stored in array EE(NTMAX ,MAXMC ,*), where NTMAX

is at least 8. An arbitrary number of values for each material constant may be used to

describe the material's dependence on temperature. A maximum of three words may be
used to name a material constant.

IF(MATTYPE .EQ. I) THEN

C

C ISOTHERMAL ELASTIC PLASTIC MATERIAL

C

IF( WOKDI .EQ. 'YOU' .AND. WORD2 .EQ. 'HOD') THEN

EE(I,3,MATNUM) = RVALUE(3)

ELSE IF( WORDI .EQ. 'POI' .AND. WORD2 .EQ. 'RAT') THEN

EE(I,4,MATNUM) = RVALUE(3)

ELSE IF( WORDI .EQ. 'YIE' .AND. WORD2 .EQ. 'STR') THEN

EE(I,5,MATNUM) = RVALUE(3)

ELSE IF( WORDI .EQ. 'HAR' .AND. WORD2 .EQ. 'HOD') THEN

EE(I,6,MATNUM) = RVALUE(3)

ELSE IF( WORDI .EQ. 'HAR' .AND. WORD2 .EQ. 'PAR') THEN

EE(I,7,MATNUM) = RVALUE(3)

ELSE IF( WORDI .EQ. 'BET' ) THEN

EE(I,7,MATNUM) = RVALUE(3)
END IF

Here the values are stored beginning with 3 as the second array index. Locations 1 and

2 are used to store the temperatures and thermal strains, respectively. If a material

parameter had a temperature dependence, its values would be stored b_ varying the first

index of the EE array from 1 to NTMAX,the maximum number of temperature points input.

This model allows the keyword HARDENING PARAMETER as a synonym for BETA.

The material constants are echoed by SUBROUTINE PRINTMT. As an example of the

statements that are needed, the following statements are used for the isothermal elas-

tic/plastic model.

IF(MTYPE(N).EQ.I) WORD = 'ISOTHERMAL ELASTIC PLASTIC'

IF(MTYPE (N) .EQ. I) THEN

WRITE (ROUT,5050) EE(I,3,N)

WRITE (ROUT,5060) EE(I,4,N)

WRITE (ROUT,5070) EE(I,5,N)

WRITE (KOUT,5080) EE(I,6,N)

WRITE (KOUT,5090) EE(I,7,N)
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The following FORMAT statements are used for tile isothermal elastic/plastic model.

5050 FORMAT(' YOUNGS MODULUS ',IX,GIO.3)

5060 FORMAT(' POISSONS RATIO ',IX,GIO.3)

5070 FORMAT(' YIELD STRESS ',iX,GIO.3)

5080 FORMAT(' HARDENING MODULUS ',IX,GIO.3)

5090 FORMAT(' BETA ',IX,GIO.3)

C.3 Calling the Material Model

The call to tile material model which updates the stress every conjugate gradient

(CG) iteration must be added to SUBROUTINE RESFORH. By convention, the name of the

material model subroutine is SE (for a-e, stress-strain) followed by the material type

number. The following statement calls the isothermal elastic/plastic modeh

IF(MTYPE(IMM) .EQ.I) CALL SEI(EE(I, I,IMM),

1 CH( i,LFT),TSIG(i,LFT) ,TEPX(NEP),DVEL,

2 DTHS (LFT),NEL)

Here EE contains the material constants and CH returns the 21 entries defining a modulus
to be used for the CG line search. TSIG is the current stress in the deformed but unro-

tated configuration, TEPX stores the current state variables, DVEL contains the velocity

gradients, DTHS contains the thermal strains for thermally-loaded problems, and NEL is

the number of elements in the current vector block to be processed by the constitutive

model.

C.4 Interpolating Temperature-Dependent Material Constants

If the new model has moduli that vary with temperature, then SUBROUTINE INTERP1

must be modified. The interpolated material properties are stored in array CM.Values for

the material constants at the beginning and the end of the time step must be calculated.

As an example, the following interpolates four material constants at the beginning and

the end of the time step:

C

C INTERPOLATE AT THE BEGINNING OF THE STEP

C

RATIO = (THI(I)-EE(M-I,I))/(EE(M, I)-EE(M-I, i))
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IF (MTYPE.EQ.2) THEN

CM(I,I,I) = EE(M-I,3) + BATIO*(EE(M,3)-EE(M-I,3))

CM(I,2,I) = EE(M-I,4) + RATIO*(EE(M,4)-EE(M-I,4))

CS(l,3,I) = EE(M-I,5) + RATIO*(EE(M,5)-EE(M-I,5))

CM(I,4, I) = EE(M-I,6) + RATIO*(EE(M,6)-EE(M-I,6))

END IF

C

C INTERPOLATE AT THE END OF THE STEP

C

RATIO = (TH2(I)-EE(M-I,I))/(EE(M,I)-EE(M-I,I))

IF (MTYPE.EQ.2) THEN

CS(2,l,I) - EE(M-I,3) + RATIO*(EE(M,3)-EE(M-I,3))

CS(2,2,I) = EE(M-I,4) + RATIO*(EE(M,4)-EE(M-I,4))

CS(2,3,I) = EE(M-I,5) + KATIO*(EE(M,5)-EE(M-I,5))

CM(2,4,I) = EE(M-I,6) + RATIO*(EE(M,6)-EE(M-I,6))
END IF

C.5 The Diagonal of the Stiffness Matrix

SUBROUTINE DIAG calculates the preconditioning matrix M to be the diagional of

the linear stiffness matrix, as described in Section 3.3. The two quantities (A + 2#)/A and

#/A must be supplied for each element in the material block, where A and # are the Lain4

parameters for the material and A is the element area. For example, the following code

is for the isothermal elastic/plastic material model. For this model, EE(1,3) contains

Young's modulus and EE(1,4) contains Poisson's ratio.

IF (MTYPE.EQ. i) THEN

El = EE(I,3)*(I.O-EE(t,4))/((I.O+EE(I,4))*(I.O-2.0*EE(I,4)))

E2 = 0.5*EE(I,3)/(I.O+EE(I,4))

DO I00 I = I,NEL

C(I,I) = El/AREA(I)

C(2,I) = E2/AREA(I)

I00 CONTINUE

If the new model has temperature-dependent material constants, then the interpolated

values in the CMarray should be used instead of the values in the EE array.
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C,,6 The Effective Bulk Modulus

SUBROUTINE THFORuses an effective bulk modulus to calculate the thermal expansion

contribution to the applied loads vector. (The applied loads vector is used only to scale

the residual force norm for comparison with the residual tolerance.) The elastic bulk

modulus must be supplied for each element in the material block. The following code

performs this calculation for the isothermal elastic/plastic model, where EE(1,3) contains

Young's modulus and EE(1,4) contains Poisson's ratio.

IF (MTYPE. EQ. I) THEN

BULK = EE(I,3)/(I.O-2.0,EE(I,4))

DO I00 1 = I,NEL

THSIG(1) = BULK*DTHS(1)

I00 CONTINUE

As in SUBROUTINE DIAG, if the model has temperature-dependent material constants, CM
shouldbe used insteadofEE.

C.7 The Effective Shear Modulus

SUBROUTINE CVlS calculates an effective shear modulus for use in the hourglass

control logic, as described in Section 4.1.1. The elastic shear modulus must be supplied

for each element in the material block. The following code performs this calculation

for the isothermal elastic/plastic model, where EE(1,3) contains Young's modulus and

EE(1,4) contains Poisson's ratio.

IF(MTYPE.EQ. i) THEN

DO I00 1 = I,NEL

GA(I) = 0.5*EE(I,3)/(I.O+EE(I,4))

I00 CONTINUE

As in SUBROUTINE DIAG, if the model has temperature-dependent material constants, CM
should be used instead of EE.

C.8 The Line Search Modulus

The moduli needed to perform the CG line search as described in Section 3.4.2 are

returned by the material model subroutine in the array C. Ten entries in the (assumed

symmetric) 4 x 4 modulus matrix relating the components of the current stress increment

to the current strain increment must be supplied by the model, stored as follows:
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c(1) c(2) c(6) c(8)
c(2) c(3) c(7) c(9)
c(6) c(7) c(5) c(10)
c(8) c(9) c(10) c(4)

For the isothermal elastic/plastic model, the secant modulus derived in Section 5.1.6 is

used. If a secant modulus is not available, an elastic modulus or a tangent modulus may

be used. However, the convergence rate of the CG algorithm is affected by the accuracy
of the line search.

C.9 Example of a Material Model Subroutine: Isothermal

Elastic/Plastic

SUBROUTINE SE1(EE,C,SIG,EPX,DVEL,DTHS,NEL)

--'--_ _-_'--'--_--"_..__. _ Z._'_'__ _ _'_'-"--

C

C ELASTIC-PLASTIC MATERIAL WITH ISOTROPIC AND KINEMATIC HARDENING

C THE ROUTINE C0HPUTES THE STRESSES FOR NEL ELEMENTS FOR THE

C JAC2D PROGRAM.

C

C

C DVEL CONTAINS INCREMENTAL STRAINS WITH DXY, DYZ, AND DZX BEING

C ENGINEERING SHEAR STRAIN QUANTITIES

C

C SEVEN HISTORY VARIABLE OR PLOT VARIABLES FOR THE CONSTITUTIVE

C MODEL ARE STORED IN ARRAY EPX

C

C THE CONSTITUTIVE ARRAY C CONTAINS THE ELASTIC OR SECANT

C CONSTITUTIVE MATRIX STORED AS

C

C C(1) C(2) C(6) C(8)
C

C C(2) C(3) C(7) C(9)
C

C C(6) C(7) C(5) C(10)
C

C C(8) C(9) C(IO) C(4)
C

C THE THERMAL STRAIN IS STORED IN THE DTHS ARRAY

C

INCLUDE 'COMIN'

C
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DIMENSION EE(NTMAX, *) ,C(lO,*) ,SIG(4,*) ,EPX(5,*),DVEL (5,*) ,DTHS(*)
C

THIRD = 1.0/3.0

QH = EE(I,3)*EE(I,6)/(EE(I,3)-EE(I,6))

QB = EE(I,7)

QS = EE(I,5)

Cl = EE(I,3)*EE(I,4)/((I.O+EE(I,4))*(I.O-2.0*EE(I,4)))

G2 = EE(I,3)/(I.O+EE(I,4))

G = 0.5.G2

QBQH - QB.QH
C

C COMPUTE TRIAL STRESS

C

DO I00 I = I,NEL

DXX = DVEL(I,I)

DYY = DVEL(2,I)

DZZ = DVEL(3,1)

DXY = 2.O*DVEL(4, I)

P = CI.(DXX + DYY + DZZ-3.0.DTHS(I))

SIG(I,I) = SIG(I,I)+P+G2*(DXX-DTHS(I))

SIG(2 I) = SIG(2 I)+P+G2*(DYY-DTHS(I))J

i SIG(3 I) = SIG(3 I)+P+G2*(DZZ-DTHS(I))

SIG(4,1) = SIG(4,I)+G*DXY

I00 CONTINUE

C

All = G2*THIRD

A33 = All + Cl

IF(QS.EQ.O.O) THEN
A332AI = AS3+2.0*AII

A33AI = A33-AII

All5 = 1.5*All

DO Ii0 I = I,NEL

C(l,I) = A332AI

C(3,I) = A332AI

C(S,I) = A332AI

C(2,1) : A33AI

C(6,I) = A33AI

C(7,I) = A33AI

C(4,I) = AIIS

C(8,I) = 0.0

C(9,I) = 0.0

C(IO,I) = 0.0
II0 CONTINUE
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ELSE

C

FACI = 1.0/(1.5*G2+QH)
FAC2 = 1.5.G2

FAC3 = (I.O-QB)*QH

All = G2*THIRD

A22 = 2.25*G2*G2*FACl

A33 = All + Cl

C

DO 120 I = I,NEL

AM - QS+QBQH*EPX(5,I)

DAI = SIG(I,I)-EPX(I,I)

DA2 = SIG(2,I)-EPX(2,I)

DA3 = SIG(3,I)-EPX(3,I)
C

QI = (2.0*DAI-DA2-DA3)*THIRD

Q2 = (2.0*DA2-DAI-DAS)*THIRD

Q3 - (2.0*DA3-DAI-DA2)*THIRD

Q4 = SIG(4,I)-EPX(4,I)
C

AJ2 = Q4,Q4-QI,Q2-Q2*Q3-QI*Q3
AK2 - 3.0*AJ2-AK*AK

C

SCLE = 0.5*(I.O+SIGN(I.O,AK2))

C

AJI = SQRT(3.0,ABS(AJ2))+I.O-SCLE

C

DEPI = SCLE,FACI,(AJI-AK)

EPX(5,I) = EPX(5,I)+DEPI

DEPS = SCLE*FAC2*DEPI/AJi

DEPN = SCLE*FAC3*DEPI/AJI

C

SIG(I,I) = smG(i ,I)-DEPS*QI

SIG(2,I) = SIG(2,I)-DEPS*q2
SIG(3,I) = SIG(3,I)-DEPS*Q3

SIG(4,I) = SIG(4,I)-DEPS*Q4
C

EPX(I,I) = EPX(I,I)+DEPN,QI

EPX(2,I) = EPX(2,I)+DEPN*Q2

EPX(3,I) - EPX(3,I)+DEPN,Q3

EPX(4,I) = EPX(4,I)+DEPN,q4
C

AI = AII,(I.O-DEPS,SCLE)
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A2 = A22*AK*SCLE/(AJI**3.O)

C

C(1,I) = A33 + 2.0.A1 - A2*QI*QI

C(3,I) = A33 + 2.0*Ai - A2*Q2*Q2

C(5,I) = A33 + 2.0.A1 - A2*Q3*Q3

C(2,I) = A33- AI - A2*Q2*Qi

C(6,I) = A33- AI - A2*QI*Q3

C(7,I) = A33- AI - A2*Q2*Q3

C(4,I) = 1.5,A1- A2,Q4,Q4,0.5

C(8,I) = -A2,QI,Q4

C(9,I) = -A2*Q2*Q4

C(lO,I) = -A2*Q3*Q4
120 CONTINUE

C

END IF

RETURN

END
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Appendix D
RIB and GENISES Information

The following information is provided for the benefit of the Yucca Mountain Project.

D.1 Information From the Reference Information Base Used

in This Report

This report contaim no information from the Reference Information Base.

D.2 Candidate Information for the Reference Information Base

This report contains no candidate information for the Reference Information Base.

D.3 Candidate Information for the Geographic Nodal Infor-
mation Study and Evaluation System

This report contains no information for the Geographic Nodal Information Study
and Evaluation System.
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