High-volume, high-value usage of Flue Gas Desulfurization (FGD) by-products in underground mines. Phase 1 -- Laboratory Investigations. Quarterly report, January 1995--March 1995

PDF Version Also Available for Download.

Description

The study of the kinetics of the mineral transformations which take place after the FGD materials are hydrated was continued this quarter (Task 2, Subtask 2.2). Based on X-ray diffraction data, the anhydrite was found to have essentially disappeared by the fifth day of the study, while gypsum was found to maximize in the first 14 days of the study. The relative abundance of ettringite increased throughout the period of observation (40 days). Ettringite was found to nucleate primarily on or near fly ash particles, while gypsum was found to be more mobile, readily filling in cracks and fractures. A ... continued below

Physical Description

16 p.

Creation Information

Creator: Unknown. June 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Creator

  • We've been unable to identify the creator(s) of this report.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The study of the kinetics of the mineral transformations which take place after the FGD materials are hydrated was continued this quarter (Task 2, Subtask 2.2). Based on X-ray diffraction data, the anhydrite was found to have essentially disappeared by the fifth day of the study, while gypsum was found to maximize in the first 14 days of the study. The relative abundance of ettringite increased throughout the period of observation (40 days). Ettringite was found to nucleate primarily on or near fly ash particles, while gypsum was found to be more mobile, readily filling in cracks and fractures. A second kinetic study was initiated during the period with an experimental setup which is similar to the current effort. The focus of this study will be to determine the effect of moisture conditions on the rate and types of mineralogical reactions which occur. Column leaching studies (Task 2, Subtask 2.4) on the ADM material were initiated during the quarter. Two columns were packed with fly ash and one with bottom ash. One of the columns was blanketed with CO{sub 2} (2.5%) to model the effects of soil gas on the leachate. The samples are being moisturized to model field conditions. Leachate analysis will be available during the next quarter. Work on the field site (Task 6) to establish background data for the demonstration continued. The proposed demonstration site at the Pleasant Valley mine was found to be displaying the effects of severe weathering. An alternate mine site will be explored.

Physical Description

16 p.

Notes

OSTI as DE96000566

Source

  • Other Information: PBD: Jun 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96000566
  • Report No.: DOE/MC/30251--5029
  • Grant Number: FC21-93MC30251
  • DOI: 10.2172/155320 | External Link
  • Office of Scientific & Technical Information Report Number: 155320
  • Archival Resource Key: ark:/67531/metadc622866

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Nov. 20, 2015, 8:49 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

High-volume, high-value usage of Flue Gas Desulfurization (FGD) by-products in underground mines. Phase 1 -- Laboratory Investigations. Quarterly report, January 1995--March 1995, report, June 1995; United States. (digital.library.unt.edu/ark:/67531/metadc622866/: accessed November 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.