Flow visualization using moving textures

PDF Version Also Available for Download.

Description

An intuitive way to visualize a flow is to watch particles or textures move in the flow. In this paper, the authors show how texture mapping hardware can produce near-real-time texture motion, using a polygon grid, and one fixed texture. However, the authors make no attempt to indicate the flow direction in a still frame. As discussed here, any anisotropic stretching comes from the velocity gradient, not the velocity itself. The basic idea is to advect the texture by the flow field. In a cited paper, they gave an indication of the wind velocity by advecting the 3D texture coordinates ... continued below

Physical Description

9 p.

Creation Information

Max, N. & Becker, B. April 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 76 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

An intuitive way to visualize a flow is to watch particles or textures move in the flow. In this paper, the authors show how texture mapping hardware can produce near-real-time texture motion, using a polygon grid, and one fixed texture. However, the authors make no attempt to indicate the flow direction in a still frame. As discussed here, any anisotropic stretching comes from the velocity gradient, not the velocity itself. The basic idea is to advect the texture by the flow field. In a cited paper, they gave an indication of the wind velocity by advecting the 3D texture coordinates on the polygon vertices of a cloudiness contour surface in a climate simulation. This was slow, because the 3D texture was rendered in software, and because advecting the texture was difficult for time-varying flows. In this paper, they replace the 3D textures by 2D texture maps compatible with hardware rendering, and give techniques for handling time-varying flows more efficiently. The next section gives their technique for the case of 2D steady flows, and the following one discusses the problems of texture distortion. Then they discuss the problems with extending method to time-varying flows, and two solutions. Next they develop compositing methods for visualizing 3D flows. The final section gives their results and conclusions.

Physical Description

9 p.

Notes

OSTI as DE96002040

Source

  • Visualizing time vary data, Williamsburg, VA (United States), 18-19 Sep 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96002040
  • Report No.: UCRL-JC--120638
  • Report No.: CONF-9509245--1
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 125086
  • Archival Resource Key: ark:/67531/metadc622754

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Feb. 16, 2016, 7:14 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 76

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Max, N. & Becker, B. Flow visualization using moving textures, article, April 1, 1995; California. (digital.library.unt.edu/ark:/67531/metadc622754/: accessed November 13, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.