Measuring enthalpies of formation using thick multilayer foils and differential scanning calorimetry

PDF Version Also Available for Download.

Description

The ability to measure formation enthalpies of compounds at relatively low temperatures using thick multilayer foils and differential scanning calorimetry is demonstrated. Cu/Zr and Al/Zr multilayers were deposited onto Si and glass substrates using a planetary, magnetron source sputtering system. The as-deposited foils were removed from their substrates and heated from 50 to 725C in a differential scanning calorimeter (DSC). The Cu/Zr samples, which are all Cu-rich, showed three distinct, reproducible, and exothermic solid state reactions. The heats from the first two reactions were summed and analyzed to measure 14.3{plus_minus}0.3 kJ/mol for Cu{sub 51}Zr{sub 14}`s enthalpy of formation. This quantity ... continued below

Physical Description

8 p.

Creation Information

Weihs, T.P.; Barbee, T.W. Jr. & Wall, M.A. April 14, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 16 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The ability to measure formation enthalpies of compounds at relatively low temperatures using thick multilayer foils and differential scanning calorimetry is demonstrated. Cu/Zr and Al/Zr multilayers were deposited onto Si and glass substrates using a planetary, magnetron source sputtering system. The as-deposited foils were removed from their substrates and heated from 50 to 725C in a differential scanning calorimeter (DSC). The Cu/Zr samples, which are all Cu-rich, showed three distinct, reproducible, and exothermic solid state reactions. The heats from the first two reactions were summed and analyzed to measure 14.3{plus_minus}0.3 kJ/mol for Cu{sub 51}Zr{sub 14}`s enthalpy of formation. This quantity agrees with the single value of {Delta}H{sub f} = 14.07{plus_minus}1.07kJ/mol reported for this compound. The composition of the Al/Zr multilayers ranged from 8 at% Zr to 64 at% Zr. These samples showed a variety of distinct, reproducible, and exothermic solid state reactions. The total heats from these reactions were summed and analyzed to measure enthalpies of formation for five different Al-Zr alloys. The results compare favorably with literature values of {Delta}H{sub f}. Advantages of measuring enthalpies of formation using thick multilayer foil samples and low temperature DSC calorimetry are discussed.

Physical Description

8 p.

Notes

OSTI as DE95015884

Medium: P; Size: 8 p.

Source

  • Spring meeting of the Materials Research Society (MRS), San Francisco, CA (United States), 17-21 Apr 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95015884
  • Report No.: UCRL-JC--118964
  • Report No.: CONF-950412--35
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 106739
  • Archival Resource Key: ark:/67531/metadc622752

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 14, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 13, 2017, 2:03 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 16

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Weihs, T.P.; Barbee, T.W. Jr. & Wall, M.A. Measuring enthalpies of formation using thick multilayer foils and differential scanning calorimetry, article, April 14, 1995; California. (digital.library.unt.edu/ark:/67531/metadc622752/: accessed October 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.