DEVELOPMENT OF THE INSTRUMENTATION AND MODELING FOR HEAT TRANSFER CHARACTERISTICS IN CFBC

PDF Version Also Available for Download.

Description

This technical report summarizes the research conducted and progress achieved during the period from October 1, 1998 to March 31, 1999. Numerical simulation was conducted to predict the flow pattern, velocity and pressure, temperature, and heat transfer characteristics in the CFB system. The 2-D air velocity profiles showed the axial and tangential velocity profiles in the CFB riser. The small flow boundary layers were found near the CFB riser. The tangential velocity profile is characterized by injection of aeration air. The highest air pressure at the bottom of the heat transfer probe caused a strong gas mixing process in the ... continued below

Physical Description

vp.

Creation Information

Lee, Dr. Seong W. April 1, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This technical report summarizes the research conducted and progress achieved during the period from October 1, 1998 to March 31, 1999. Numerical simulation was conducted to predict the flow pattern, velocity and pressure, temperature, and heat transfer characteristics in the CFB system. The 2-D air velocity profiles showed the axial and tangential velocity profiles in the CFB riser. The small flow boundary layers were found near the CFB riser. The tangential velocity profile is characterized by injection of aeration air. The highest air pressure at the bottom of the heat transfer probe caused a strong gas mixing process in the CFB riser. The heat absorbing water-cooled heat transfer probe enclosing the CFB riser of the cold model was assumed. The gas temperature decreased along the flow direction of the heat transfer probe. The heat transfer characteristics was described by the heat flux changes in the CFB chamber. The higher heat flux was found at the bottom of the heat transfer probe. A large amount of heat is generated and removed via the neighboring the heat transfer probe. Numerical simulation will be continued to predict the flow patterns, velocity, pressure, temperature, and heat transfer characteristics in the CFB system.

Physical Description

vp.

Notes

OSTI as DE00014724

Source

  • Other Information: PBD: 1 Apr 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DE-FG22-95MT95013--07
  • Grant Number: FG22-95MT95013
  • DOI: 10.2172/14724 | External Link
  • Office of Scientific & Technical Information Report Number: 14724
  • Archival Resource Key: ark:/67531/metadc622728

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 15, 2016, 12:57 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Lee, Dr. Seong W. DEVELOPMENT OF THE INSTRUMENTATION AND MODELING FOR HEAT TRANSFER CHARACTERISTICS IN CFBC, report, April 1, 1999; Morgantown, West Virginia. (digital.library.unt.edu/ark:/67531/metadc622728/: accessed December 11, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.