Multidimensional DDT modeling of energetic materials

PDF Version Also Available for Download.

Description

A nonequilibrium continuum mixture model has been incorporated into the CTH shock physics code to describe deflagration-to-detonation transition in granular energetic materials. This approach treats multiple thermodynamic and mechanics fields including the effects of relative material motion, rate-dependent compaction and interphase exchange of mass, momentum and energy. A finite volume description is formulated and internal state variables are solved using an operator-splitting method. Numerical simulations of low-velocity impact on a weakly-confined porous propellant bed are presented which display lateral wall release leading to curved compaction and reaction wave behavior.

Physical Description

4 p.

Creation Information

Baer, M.R.; Hertel, E.S. & Bell, R.L. August 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A nonequilibrium continuum mixture model has been incorporated into the CTH shock physics code to describe deflagration-to-detonation transition in granular energetic materials. This approach treats multiple thermodynamic and mechanics fields including the effects of relative material motion, rate-dependent compaction and interphase exchange of mass, momentum and energy. A finite volume description is formulated and internal state variables are solved using an operator-splitting method. Numerical simulations of low-velocity impact on a weakly-confined porous propellant bed are presented which display lateral wall release leading to curved compaction and reaction wave behavior.

Physical Description

4 p.

Notes

OSTI as DE95016462

Source

  • American Physical Society biennial conference on shock compression of condensed matter, Seattle, WA (United States), 13-18 Aug 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95016462
  • Report No.: SAND--95-1765C
  • Report No.: CONF-950846--11
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/102194 | External Link
  • Office of Scientific & Technical Information Report Number: 100269
  • Archival Resource Key: ark:/67531/metadc622668

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 14, 2016, 5:51 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Baer, M.R.; Hertel, E.S. & Bell, R.L. Multidimensional DDT modeling of energetic materials, article, August 1, 1995; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc622668/: accessed September 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.