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Abstract 

A new code, bimc, is under development to determine if a beam of heavy ions 

can be focused to the necessary spot-size radius of about 2 mm within an inertial 

confinement reactor chamber where the background gas densities are on the order of 

1014 - lo1' c7n-3 Lithium (or equivalent). Beam transport is expected to be strongly 

affected by stripping and collective plasma phenomena; however, if propagation is 

possible in this regime, it could lead to simplified reactor designs. 

The bearn is modeled using a 2 1/2 D particle-in-cell (PIC) simulation code 

coupled with a Monte Carlo (MC) method for analysing collisions. The MC code 

follows collisions between the beam ions and neutral background gas atoms that 

account for the generation of electrons and background gas ions (ionization), and an 

increase of the charge state of the beam ions (stripping). The PIC code models the 

complete dynamics of the interaction of the various charged particle species with the 

self generated electromagnetic fields. 

Details of the code model and prelimenary results are presented. 

* This work was supported by the Director, Office of Energy Research, Office of Fusion Energy, 

U.S. Dept. of Energy, under Contract No. DGAC03-7GSF00098 
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1.0 Introduction 

As a beam of heavy ions traverses an inertial confinement fusion reactor chamber 

between subsequent microexplosions it will, in some scenarios, encounter background 

gas densities on the order of 1014 - 10’’ Lithium (or equivalent). Successful 

beam propagation in this regime could result in simpler reactor designs eliminating 

the need for sophisticated pressure reduction mechanisms and neutralization schemes. 

Collisions of the beam ions with the background gas will result in beam stripping, 

that is an increase in the charge state of the beam ions due to the loss of electrons, 

and in ionization of the background gas. Capture, the process whereby a beam ion 

picks up an electron, is highly unlikely at the velocities under consideration here. 

The repulsive electric force dominates over the magnetic pinch force that results from 

the beam current, and defocuses the beam. However the electrons, generated from 

both stripping and ionization, may effectively be confined within the beam, thereby 

providing the necessary charge neutralization to offset the damaging effects of the 

stripping of the beam. 

Because the collisions result in a highly random distribution of beam charge states, 

analytic methods prove inadequate for completely describing the dynamics of the 

beam. We therefore use a particle-in-cell (PIC) simulation to follow the beam ions, 

electrons and background gas ions as  they intereact with the self-generated electro- 

magnetic fields. In addition, we use a Monte Carlo (MC) method to simulate the 

randomness of the collisions. 

In the subsequent sections we shall provide details of both the PIC and MC 

models used in developing the birnc computer code for analysing beam transport, 

and present some prelimenary results of simulations with this code. These results 

show that a 2.1 kA beam of Hg ions can be focused to the necessary spot through a 

background gas density of .lo1* and possibly higher. 

, 
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2.0 Particle-in-cell method 

We can reduce the geometry of the problem under consideration by assuming 

that the beam is axisymmetric. The reactor chamber then may be treated as a large 

open-ended cylinder with a conducting wall at a radius that is several times that of 

the beam (for computational reasons the radius of the chamber is taken to be three 

times the beam radius; in reality, within the chamber the closest "structure", the 

liquid jets, are about five or six beam radii away), and the beam travels along the 

central axis of the cylinder. The PIC method, thoroughly described by Birdsall and 

Langdon [lJ, requires that we impose a spatial grid on this system; in this case a 

2 D, (r,z) ,  grid, where r is along the radius of the cylinder and z along it's axis. 

The particles, that is the beam ions, electrons and gas ions, can have any position, 

r, z, and velocity, vr, v6, v,; all three velocities are retained in order to advance the 

particles. However, the fields, E,, E,, BB (only the transverse-magnetic field set is 

retained since the beam does not spin), and the current density sources, Jr,  J,, are 

known only at specific spatial grid locations. A temporal grid is also imposed on 

which the electric fields and positions of the particles are determined at every time- 

step, while the velocities, magnetic field, and current densities are offset .by a half 

time-step. The Courant-Friedrichs-Levy condition imposes a limit on the relation 

between the time-step, At, and the spatial grid divisions, AT and Az : 

( c A ~ ) ~  (-& + 5) < 1 .  

We start by specifying the initial positions, velocities and fields (from an analytical 

approximation for a beam in a pipe). We then use a second-order accurate "lap-frog" 

algorithm to  advance these various quantities. We first advance the positions of the 

particles across a time-step by using the velocities at the half-time-step: 

where r is the position of the particle and v is it's velocity; the superscripts denote a 

particular location on the temporal grid. Although the axial position is advanced in 

a straight forward manner, the radial position is advanced using a Cartesian system 
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to avoid complications at small radii. In such a scheme, developed by Boris [2], the 

particle is originally located at x = rn and y = 0; these positions are then advanced 

using v2 = vr n+1’2 and vuy = ve , and finally the new radius is calculated via 

r n + l =  Jm. 
n+1/3 

The next step is to calculate the current density from the velocities and charges 

of the particles: 

the subscripts denote a particular spatial grid location. As mentioned above, the 

current densities are known only at specific grid points, while the particles citn have 

any position in the chamber. Therefore we need to “weight” the charge-velocity 

product given in the parenthesis to a grid point, j,k, where v, as before, is the 

velocity and q is the charge of the particle. We use a bilinear r2, z scheme to “weight” 

the particles to the grid. The sum over i indicates that only those particles that are 

within an annular volume element AV around the grid location, j,k, contribute to 

the current density. 

Next we use Maxwell’s equations to advance the fields: 

where the curl operator needs to be appropriately differenced, and the current density 

is given by (3). 

Finally we need to advance the velocities using the Lorentz force equation: 

L 

where u = 7v, and 7 is the relativistic factor. As was the case with calculating the 

current density, we know the fields at the specific grid points, however the positions of 

the particles are arbitrary; therefore we a.gain use a bilinear r2,  z scheme to “weight” 

the fields, to the particle locations. The  axial velocity of the beam ions is assumed to 

remain constant, therefore only the transverse velocity needs to be advanced. If we 
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assume that 7 is also a constant, then the cross product in (5) simply becomes v&. 

However, for the electrons these assumptions are not valid and both the axial and 

transverse velocities need to be advanced using the complete relativistic equation. 

The coupling between the two velocity components via the cross product presents 

complications. An elegant solution is to decouple the electric and magnetic forces 

[2]. We first use half the electric force to advance the velocity, then use the magnetic 

force to rotate the velocity and finally use the remaining half of the electric force to 

complete the advance. 

Using equations (2), (4) and (5) we can successfully advance the particles’ pos- 

titions and velocities and the electric and magnetic fields across a single time-step. 

We repeat this process every time-step, thereby simulating the transport of the beam 

through the chamber. 

3.0 Monte Carlo method 

So far we have discussed a method for moving the particles through the chamber; 

no mention has been made about the collisions that the beam ions have with the 

background gas. As mentioned above these collisions can result in stripping where the 

charge state of the beam ion increases, and in ionization where a neutral background 

gas atom gets ionized; both processes generate electrons. The MC method, described 

by Birdsall [3], relies on “throwing” random numbers to decide if certain events will 

occur based on the probabilities of these events. 

Because the background gas consists of light ions, and the beam is fast and 

heavy, any collision of a beam ion with a background gas atom will, in general, result 

in ionization of the gas. The beam ion can then either strip while it ionizes the 

background gas or not. We characterize the former process by the stripping cross 

section, as, and the latter by the ionization cross section, ai. We then define the total 

cross section as a = os + a;, and the collision frequency, v,, as: 

v, = ongvf , 



where ng is the density of the background gas and ‘uz is the axial velocity of the beam 

ion. 

Now the probability that a beam ion will undergo any type of collision is given 

by: 

P = 1 - exp(-v,At) , (7) 

To determine if a particular beam ion undergoes a collision, we “throw” a random 

number ( that is uniformly distributed on the interval [0,1]. Then if ( 5 P we 

conclude that the beam ion has collided. We do this for every beam ion in every 

time-step. The drawback of this method is that it allows each beam ion to undergo 

only one collision per time-step. Vahedi and Surendra [4] found that the following 

limit on At results in a 1% error from “missed” collisions: 

u,At < 0.1 . 

After we have concluded that a particular beam ion has collided, we create a 

stationary gas ion and an almost stationary electron (except €or a small, - 100 eV, 

transverse energy that results from the ionization process) at the location of the beam 

ion. We now need to determine if the beam ion strips. To do this we first calculate 

the relative stripping cross section given by S = as/a. We then “throw” another 

random number <. If e 5 S then the beam ion has undergone a stripping collision, 

and we increment the charge state of the ion and create an electron at the location 

of the beam ion. The velocity of this electron is almost equal to that of the beam ion 

from which it was ionized. 

The above procedure is repeated for every beam ion at every time-step, and is 

conducted immediately after the particle’s positions are advanced using (2). 

In order to accurately follow the particles using the “leap-frog” scheme described 

in section 2.0, we require that the product of the largest frequency of interest and the 

time-step be less than about 0.2; this reduces the phase error to about 3 x lov4 rad 

per time-step 111. As the beam ions collide with the background gas, the density of 

electrons, and hence their plasma frequency, up, increases. Therefore we impose the  

. 
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4.0 Results 

following limit on the time-step: 

w,At < 0.2 . 

We present here the results of a typical simulation using the bimc code described 

above. We start with a 1 m long, 8 m radius, cylindrical beam with the Kapchinsky- 

Vladimirsky distribution and an edge emittace of 19 nmm - mrad. An artificial lens, 

located 4 m away from the pellet, imparts a radial “kick” to the beam ions as they 

cross the lens-plane so as to focus them onto the pellet (this simulates the effect of the 

final focus system). The head of the beam is initially slightly behind the lens-plane. 

The beam is composed of Hg+ ions, with an axial velocity of 0.32 c, and an initial 

current of 2.1 LA. The background gas is lo1* cm-3 Li. This gas only exists in 

the region between the lens-plane and the pellet. These parameters are typical for a 

heavy-ion driven inertial confinement fusion facility, see for example Lee [5]. 

The single electron stripping cross sections, os, €or Hg colliding into Li, calculated 

using a semi-classical approach based on a modified version of the Bohr theory [6], 

range from - em2 for almost fully stripped mercury. 

Similarly the ionization cross sections, o;, go from - m2 for Hg+ to - 
m2 to - on2. 

The simulation was done using 13776 beam ions. Initially the time-step was set 

at 7.5 ps ;  towards the end, when the head of the beam was about 20 cm away from 

the target, the time-step was shortened to 4.5 p s  because of the limit on the plasma 

frequency. The total run-time was - 14 hrs on a SUN SparclO CPU. 

Figure 1 shows the state of the bea.m at various time intervals (superimposed 

on the same graph) as it ‘traverses the chamber. The first “snap-shot” is at 0 ns. 

The beam is initially slightly behind the artificial lens located at the 4 m point (the 

target is at 0 m). The next “snap-shot” is at - 12 ns. At this point all of the 

beam has passed through the lens. The next three frames are at - 25, 37, and 49 ns 
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respectively. The last of these is at the point where the mid-plane of the beam has 

just crossed the target. The “waist” of the beam occurs 10 cna beyond the target 

and is - 2.5 mm in radius, slightly larger than the spot-size required for typical 

geometries. At  the end the average charge state of the beam ions is 2’, with some 

ions at 7+; it is these higher charge state ions that contribute to the slight “halo” of 

particles around the outside edge of the beam. 

Figures 2 and 3 show the electrons and the background gas ions at - 49 ns, the 

time when the beam has reached the target. As can be seen, most of the electrons get 

carried along and are concentrated in the vicinity of the beam close to the target. It 

is these electrons that provide the necessary neutralization of the beam. By contrast, 

the background ions, being more massive than the electrons, have only a slight radial 

motion away from the beam due to the repulsive forces of the beam, but in general 

remain where they were created. 

The effect of this neutralization can best be seen by looking at the fields generated 

by the beam: If we allow the beam described above to propagate through a completely 

evacuated chamber, i.e. no stripping or ionization, then the edge radial electric field 

and the azimuthal magnetic field at the mid-pland of the beam when it has just 

crossed the target will be 7.6 x lo7 V/m and 7.5 x T respectively. The fields at 

the same point for a beam that passed through a background gas density of 1014 ern-’ 

are 1.2 x lo7 V’m and 2.8 x lov2 T. As can be seen, the radial electric field gets 

reduced by greater than a factor of 6, signifying substantial charge neutralization. 

There is also some current neutralization; the magnetic field is reduced to slightly 

more than a third it’s unneutralized value. 

5.0 Conclusion 

The simulation shows that a background Li gas density of 1014 cm-3 does not 

seriously impede our ability to focus the beam to the - 2 mm spot size radius required. 

There does not seem to be any reason why slightly higher densities, - 10’’ 
where scattering of the beam ions is still not important, would not also work since 
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the number of electrons generated would be significantly higher providing for better 

neutralization. This will need to be verified through simulations. 

The fact that the beam generates enough neutralizing electrons through colli- 

sions with the background gas at these densities removes the necessity for compli- 

cated schemes such as the injection of co-moving electrons along with the beam or 

pre-ionization of the background gas in order to introduce electrons into the beam. 

Allowing for higher background gas densities also means that one can reduce the 

stringent requirements on chamber pumping, or other mechanisms, for lowering the 

pressure between target microexplosions that are typically - 0.1 s apart. Therefore 

this mode of neutralized beam transport in higher pressure chambers provides for 

simpified reactor designs. 

Details of the PIC-MC simulation models, and the method for calculating the 

ionization and stripping cross sections are developed in a series of HIFAR Notes, 

Nos. 397,432, 437, 442,444, and 446, available through Lawrence Berkeley National 

Laboratory, Accelerator and Fusion Research Division, Heavy Ion Fusion Accelerator 

Research Group. 
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