Status of cross-section data for gas production from vanadium and {sup 26}AL from silicon carbide in a D-T fusion reactor.

PDF Version Also Available for Download.

Description

Current designs of fusion-reactor systems seek to use radiation-resistant, low-activation materials that support long service lifetimes and minimize radioactive-waste problems after decommissioning. Reliable assessment of fusion materials performance requires accurate neutron-reaction cross sections and radioactive-decay constants. The problem areas usually involve cross sections since decay parameters tend to be better known. The present study was motivated by two specific questions: (i) Why are the {sup 51}V(n,np){sup 50}Ti cross section values in the ENDF/B-VI library so large (a gas production issue)? (ii) How well known are the cross sections associated with producing 7.4 x 10{sup 5} y {sup 26}Al in silicon ... continued below

Physical Description

10 p.

Creation Information

Gomes, I. C. August 11, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Current designs of fusion-reactor systems seek to use radiation-resistant, low-activation materials that support long service lifetimes and minimize radioactive-waste problems after decommissioning. Reliable assessment of fusion materials performance requires accurate neutron-reaction cross sections and radioactive-decay constants. The problem areas usually involve cross sections since decay parameters tend to be better known. The present study was motivated by two specific questions: (i) Why are the {sup 51}V(n,np){sup 50}Ti cross section values in the ENDF/B-VI library so large (a gas production issue)? (ii) How well known are the cross sections associated with producing 7.4 x 10{sup 5} y {sup 26}Al in silicon carbide by the process {sup 28}Si(n,np+d){sup 27} Al(n,2n){sup 26}Al (a long-lived radioactivity issue)? The energy range 14-15 MeV of the D-T fusion neutrons is emphasized. Cross-section error bars are needed so that uncertainties in the gas and radioactivity generated over the lifetime of a reactor can be estimated. We address this issue by comparing values obtained from prominent evaluated cross-section libraries. Small differences between independent evaluations indicate that a physical quantity is well known while the opposite signals a problem. Hydrogen from {sup 51}V(n,p){sup 51}Ti and helium from {sup 51}V(n,{alpha}){sup 48}Sc are also important sources of gas in vanadium, so they too were examined. We conclude that {sup 51}V(n,p){sup 51}Ti is adequately known but {sup 51}V(n,np+d){sup 50}Ti is not. The status for helium generation data is quite good. Due to recent experimental work, {sup 27}Al(n,2n){sup 26}Al seems to be fairly well known. However, the situation for {sup 28}Si(n,np+d){sup 27}Al remains unsatisfactory.

Physical Description

10 p.

Notes

OSTI as DE00010650

Medium: P; Size: 10 pages

Source

  • Annual Meeting of the American Nuclear Society, Nashville, TN (US), 06/07/1998--06/12/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/TD/CP-95667
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 10650
  • Archival Resource Key: ark:/67531/metadc622660

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 11, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 6, 2017, 7:06 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Gomes, I. C. Status of cross-section data for gas production from vanadium and {sup 26}AL from silicon carbide in a D-T fusion reactor., article, August 11, 1998; Illinois. (digital.library.unt.edu/ark:/67531/metadc622660/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.